Pakistan's First Oracle Blog

Subscribe to Pakistan's First Oracle Blog feed
Blog By Fahd Mirza ChughtaiFahd Mirzahttp://www.blogger.com/profile/14722451950835849728noreply@blogger.comBlogger658125
Updated: 1 hour 13 min ago

NVIDIA SANA Model Local Installation with GUI - Step-by-Step Tutorial

Mon, 2025-01-13 17:48

 This video locally installs NVIDIA SANA which is a text-to-image framework that can efficiently generate images up to 4096 × 4096 resolution.


Code:

git clone https://github.com/NVlabs/Sana.git && cd Sana

./environment_setup.sh sana

pip install huggingface_hub

huggingface-cli login  <Get read token from huggingface.co also accept access to
google gemma model on huggingface>

# official online demo
DEMO_PORT=15432 \
python3 app/app_sana.py \
    --share \
    --config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
    --model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth \
    --image_size=1024
   
Access demo at http://localhost:15432
Categories: DBA Blogs

How-To Create Lip Sync Video with AI - Change Any Video or Audio Locally and Free

Mon, 2025-01-06 17:59

This video shows how to locally install Latent Sync AI model to lip sync any video and audio for free and in private.



Code:

git clone https://github.com/bytedance/LatentSync.git && cd LatentSync

source setup_env.sh

./inference.sh

Categories: DBA Blogs

Install NVIDIA Ingest Locally and Use it with Thousands of Documents

Sat, 2025-01-04 01:24

 This video shares step-by-step instructions to install NVIDIA Ingest locally and use it with PDFs, Word, and PowerPoint.


Code:



Pre-requisites:
===============

-- Install docker
-- Get NGC api key from https://ngc.nvidia.com/
-- Get Early Access from https://developer.nvidia.com/nemo-microservices-early-access/join

Phase 1= Configure NV-INGEST Server:
====================================

Step 1:

git clone https://github.com/nvidia/nv-ingest && cd nv-ingest

Step 2:

docker login nvcr.io

Username: $oauthtoken
Password: <Your NGC API Key>

Step 3:

Make sure NVIDIA is set as your default container runtime before running the docker compose command:
sudo nvidia-ctk runtime configure --runtime=docker --set-as-default

Step 4:

docker compose up


Phase 2= Configure NV-INGEST client:
====================================

Step 1:


conda create --name nv-ingest-dev --file ./conda/environments/nv_ingest_environment.yml
conda activate nv-ingest-dev

cd client
pip install .

Step 2:

nv-ingest-cli \
  --doc ./data/multimodal_test.pdf \
  --output_directory ./processed_docs \
  --task='extract:{"document_type": "pdf", "extract_method": "pdfium", "extract_tables": "true", "extract_images": "true"}' \
  --client_host=localhost \
  --client_port=7670

 
Where to find output?
======================

After the ingestion steps above have completed, you should be able to find text and image subfolders inside your processed docs folder. Each will contain JSON formatted extracted content and metadata.

  ls -R processed_docs
Categories: DBA Blogs

Install Kokoro TTS Model Locally

Mon, 2024-12-30 01:50

 This video locally installs Kokoro which is a frontier TTS model for its size of 82 million parameters. It can be run anywhere.





!git clone https://huggingface.co/hexgrad/Kokoro-82M
%cd Kokoro-82M

!apt-get -qq -y install espeak-ng > /dev/null 2>&1
!pip install -q phonemizer torch transformers scipy munch

from models import build_model
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL = build_model('kokoro-v0_19.pth', device)

VOICE_NAME = [
    'af',
    'af_bella', 'af_sarah', 'am_adam', 'am_michael',
    'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',][0]

VOICEPACK = torch.load(f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)
print(f'Loaded voice: {VOICE_NAME}')

from kokoro import generate
text = "How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born."
audio, out_ps = generate(MODEL, text, VOICEPACK, lang=VOICE_NAME[0])

from IPython.display import display, Audio
display(Audio(data=audio, rate=24000, autoplay=True))
print(out_ps)
Categories: DBA Blogs

MagicQuill Installation on Windows, Linux, Mac for AI Image Editing for Free

Fri, 2024-12-20 19:22

 This video is an easy step-by-step tutorial to install MagicQuill locally on Linux, Windows, Mac.


Code:

conda create -n ai python=3.10 -y && conda activate ai

git clone --recursive https://github.com/magic-quill/MagicQuill.git && cd MagicQuill

wget -O models.zip "https://hkustconnect-my.sharepoint.com/:u:/g/personal/zliucz_connect_ust_hk/EWlGF0WfawJIrJ1Hn85_-3gB0MtwImAnYeWXuleVQcukMg?e=Gcjugg&download=1"

unzip models.zip

pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118

pip install gradio_magicquill-0.0.1-py3-none-any.whl

cp -f pyproject.toml MagicQuill/LLaVA/
pip install -e MagicQuill/LLaVA/

pip install -r requirements.txt

python gradio_run.py
Categories: DBA Blogs

SOLVED - Cannot Log in Oracle cloud with 2FA after Phone Change with Oracle Mobile Authenticator

Tue, 2024-12-17 17:27

 I have been logging in to Oracle cloud using multi-factor authentication using 2FA with Oracle Mobile Authenticator and it was going fine until I had to change my phone. Both of my phones are android and I THOUGHT that I will simply migrate the apps and keep  using the accounts in my Oracle mobile authenticator same way, but it seems that after migration I lost all the accounts. 

Multi-Factor Authentication (MFA) is a security process that requires a user to provide two or more authentication factors to access a system, network, or application. Two-Factor Authentication (2FA) is a type of Multi-Factor Authentication that requires a user to provide two authentication factors:

  • Something you know (password, PIN)
  • Something you have (smartphone, token, or a one-time password sent via SMS or authenticator app)

So I was using 2FA with this Oracle Mobile Authenticator. I tried with my older codes , QR codes, the password, PIN and stuff but nothing worked. No matter, what I tried I simply couldn't log in to Oracle Cloud since the page asked me for a code generated by the authenticator.

Eventually following is the only way I could find to resolve this issue:

I talked in Oracle live chat, and they asked me to find an engineer to send me a bypass code.

If you don't know what Oracle Mobile Authenticator app is then as per docs:

Oracle Mobile Authenticator enables you to securely verify your identity by using your mobile device as a authentication factor. The app generates one-time passwords for login. Or it can receive notifications for login, which can be approved with a simple tap. When this authentication is used on top of username-password, it adds an additional layer of security that is essential for today's online applications.

Features:

  • Generate one-time passwords even when the device is offline
  • Push Notification based approval
  • App PIN for app protection
  • Set up via QR code, Config URL, or by entering key manually
  • Multiple account support
  • Generate OTP for other applications that make use of One-Time Password as per RFC 6238
  • Generate one-time passwords even when the device is offline
  • Push Notification based approval
  • App PIN for app protection


I hope this helps.

Categories: DBA Blogs

How-To Integrate ChatGPT with Oracle Digital Assistant

Tue, 2024-12-17 01:31

 Oracle Digital Assistant (ODA) provides a comprehensive platform for creating conversational interfaces. This article will guide you through integrating ChatGPT with ODA using the bots-node-sdk and openai libraries.

Prerequisites:

  • Oracle Digital Assistant instance
  • ChatGPT API key
  • Node.js environment

Configuration:

Create a new file named services.js and add the following code:

const OracleBot = require('@oracle/bots-node-sdk');
const { WebhookClient, WebhookEvent } = OracleBot.Middleware;
const express = require('express');
const { Configuration, OpenIApi } = require("openai");

const configuration = new Configuration({
  apiKey: "YOUR_CHATGPT_API_KEY",
});

const openai = new OpenIApi(configuration);

const textGeneration = async (prompt) => {
  try {
    const response = await openai.createCompletion({
      model: 'text-davinci-003',
      prompt: `Human: ${prompt}\nAI: `,
      temperature: 0.9,
      max_tokens: 500,
      top_p: 1,
      frequency_penalty: 0,
      presence_penalty: 0.6,
      stop: ['Human:', 'AI:'],
    });
    return {
      status: 1,
      response: `${response.data.choices[0].text}`,
    };
  } catch (error) {
    return {
      status: 0,
      response: '',
    };
  }
};

module.exports = (app) => {
  const logger = console;

  // Initialize Oracle Digital Assistant
  OracleBot.init(app, {
    logger,
  });

  // Set up webhook integration
  const webhook = new WebhookClient({
    channel: {
      url: "YOUR_ODA_WEBHOOK_URL",
      secret: "YOUR_ODA_WEBHOOK_SECRET",
    },
  });

  // Handle incoming messages
  webhook.on(WebhookEvent.MESSAGE_RECEIVED, (message) => {
    const action = message.queryResult.action;
    const queryText = message.queryResult.queryText;

    if (action === 'input.unknown') {
      textGeneration(queryText).then((result) => {
        if (result.status === 1) {
          res.send({
            fulfillmentMessages: [
              {
                text: {
                  text: [result.response],
                },
              },
            ],
          });
        } else {
          res.send({
            fulfillmentMessages: [
              {
                text: {
                  text: ["Sorry, I'm not able to help with that."],
                },
              },
            ],
          });
        }
      });
    } else {
      res.send({
        fulfillmentMessages: [
          {
            text: {
              text: [`No handler for action ${action}`],
            },
          },
        ],
      });
    }
  });

  // Set up endpoint for incoming messages
  app.post('/bot/message', (req, res) => {
    const message = req.body;
    webhook.send(message).then(() => res.send('ok'));
  });
};


  • Replace YOUR_CHATGPT_API_KEY with your actual ChatGPT API key.
  • Replace YOUR_ODA_WEBHOOK_URL and YOUR_ODA_WEBHOOK_SECRET with your actual Oracle Digital Assistant webhook URL and secret.

Dialog Flow Integration

To integrate the ChatGPT service with your Oracle Digital Assistant dialog flow, follow these steps:

Create a new intent in your dialog flow with the action input.unknown.

Add a new fulfillment to the intent with the following settings:

Fulfillment type: Webhook

Webhook URL: YOUR_APP_URL/bot/message (replace with your actual app URL)

HTTP method: POST

Save and deploy your dialog flow.

Testing

Test your integration by sending a message to your Oracle Digital Assistant instance. The message should be routed to the ChatGPT service, which will generate a response. The response will then be sent back to the user.

Note: Make sure to replace the placeholder values with your actual credentials and URLs.
Categories: DBA Blogs

Understanding Read-Only Options in Oracle: Instances vs. Databases

Mon, 2024-12-16 23:20

 When it comes to limiting data modifications in Oracle, two options are available: Read-Only Instances and Read-Only Databases. While both options restrict data changes, they serve different purposes and are used in distinct contexts.

Read-Only Instances:

A Read-Only Instance is a configuration in Oracle Real Application Clusters (RAC) where one or more instances are set to operate in read-only mode. This setup is ideal for environments with high concurrency for both read and write operations.

Key features of Read-Only Instances include:

  • Real-time query scaling by dedicating specific instances to read-only operations
  • Write operations are not allowed on designated read-only instances, but other instances can still handle writes
  • Useful for load balancing in RAC configurations
  • Read-Only Instances are suitable for offloading read-heavy workloads in RAC environments and supporting real-time analytics without impacting primary write performance.

Read-Only Databases

A Read-Only Database, on the other hand, is a database-wide mode that restricts all write operations. This setup is typically used for archiving, reporting, or maintenance tasks. 

Key features of Read-Only Databases include:

  • The entire database is locked for write operations
  • Used for archiving, reporting, or maintenance tasks
  • Can be achieved using the ALTER DATABASE OPEN READ ONLY command or a Data Guard physical standby database
  • Read-Only Databases are ideal for archiving purposes, maintenance periods, or using a standby database for reporting.

Choosing the Right Option:

When deciding between Read-Only Instances and Read-Only Databases, consider the following:

  • If you have a RAC environment and need to offload read-heavy workloads, Read-Only Instances might be the better choice.
  • If you need to restrict, write operations across the entire database, a Read-Only Database is the way to go.

Ultimately, understanding the differences between Read-Only Instances and Read-Only Databases will help you make informed decisions about managing your Oracle database.

Hope this helps. 

Categories: DBA Blogs

Resolving the "Invalid Characters" Error in Oracle Database 23ai Free Edition Installation

Thu, 2024-12-12 23:58

Oracle Database 23ai Free Edition offers a fully functional database for development, testing, and production purposes, allowing users to experience the powerful features of Oracle Database. However, users may encounter errors during the installation process, which can be frustrating and time-consuming to resolve. This article addresses a common issue that users may encounter during the installation of Oracle Database 23ai Free Edition and provides a solution to ensure a successful installation.

During a silent installation of Oracle Database 23ai Free Edition on Windows, the process terminates abruptly, and the setup.log file displays the following error message:

"SEVERE: The provided destination folder has invalid characters. Verify and try again."

The log file continues to grow in size, and the installation process must be manually terminated. This error can occur even when the destination folder path appears to be correct and free of any invalid characters.

Troubleshooting:

To resolve this issue, ensure that the following conditions are met:


1. Absolute Path for RSP File

Specify an absolute path for the RSP file in the command line. For example:

setup.exe /s /v"RSP_FILE=c:\myinstallpath\FREEInstall.rsp" /v"/L*v setup.log" /v"/qn"

This is necessary because the setup.exe file does not recognize the RSP file if only the filename is provided. By specifying the absolute path, you ensure that the setup.exe file can locate the RSP file correctly.


2. Empty Values in RSP File

Although the RSP file comment suggests that no parameter should be left with an empty value, it is safe to leave the DB_DOMAIN parameter empty if it is not required. This is because the DB_DOMAIN parameter is not mandatory, and leaving it empty does not affect the installation process.

Here is an example RSP file (FREEInstall.rsp) that can be used for a successful installation:


#Do not leave any parameter with empty value

#Install Directory location, username can be replaced with current user

INSTALLDIR=C:\app\myname\product\23ai\

#Database password, All users are set with this password, Remove the value once installation is complete

PASSWORD=mypassword

#If listener port is set to 0, available port will be allocated starting from 1521 automatically

LISTENER_PORT=0

#Specify char set of the database

CHAR_SET=AL32UTF8

#Specify the database domain for the db unique name specification

DB_DOMAIN=

#Specify TRUE for performing software only install

SOFTWARE_ONLY=FALSE

#Specify TRUE if installer should modify directory permissions when ACL is incorrect

MODIFY_DIRECTORY_PERMISSIONS=TRUE


By following the troubleshooting steps and using the example RSP file provided, you should be able to successfully install Oracle Database 23ai Free Edition on your Windows system. Remember to specify the absolute path for the RSP file and leave the DB_DOMAIN parameter empty if it is not required. If you encounter any further issues, refer to the Oracle Database documentation and support resources for assistance.

Categories: DBA Blogs

Control LLM's Output with Ollama Structured Outputs

Sun, 2024-12-08 00:14

 This video shows how to use Ollama to constrain the LLM output to a structured format locally.




Code:

pip install -U ollama

from ollama import chat
from pydantic import BaseModel

class Country(BaseModel):
  name: str
  capital: str
  languages: list[str]

response = chat(
  messages=[
    {
      'role': 'user',
      'content': 'Tell me about It.',
    }
  ],
  model='llama3.2',
  format=Country.model_json_schema(),
)

country = Country.model_validate_json(response.message.content)
print(country)

============

from ollama import chat
from pydantic import BaseModel

class Pet(BaseModel):
  name: str
  animal: str
  age: int
  color: str | None
  favorite_toy: str | None

class PetList(BaseModel):
  pets: list[Pet]

response = chat(
  messages=[
    {
      'role': 'user',
      'content': '''
        I have two pets.
        A cat named Luna who is 5 years old and loves playing with yarn. She has grey fur.
        I also have a 2 year old black cat named Loki who loves tennis balls.
      ''',
    }
  ],
  model='llama3.1',
  format=PetList.model_json_schema(),
)

pets = PetList.model_validate_json(response.message.content)
print(pets)

=============

from ollama import chat
from pydantic import BaseModel

class Object(BaseModel):
  name: str
  confidence: float
  attributes: str

class ImageDescription(BaseModel):
  summary: str
  objects: List[Object]
  scene: str
  colors: List[str]
  time_of_day: Literal['Morning', 'Afternoon', 'Evening', 'Night']
  setting: Literal['Indoor', 'Outdoor', 'Unknown']
  text_content: Optional[str] = None

path = 'path/to/image.jpg'

response = chat(
  model='llama3.2-vision',
  format=ImageDescription.model_json_schema(),  # Pass in the schema for the response
  messages=[
    {
      'role': 'user',
      'content': 'Analyze this image and describe what you see, including any objects, the scene, colors and any text you can detect.',
      'images': [path],
    },
  ],
  options={'temperature': 0},  # Set temperature to 0 for more deterministic output
)

image_description = ImageDescription.model_validate_json(response.message.content)
print(image_description)
Categories: DBA Blogs

Install Indic Parler-TTS model Locally

Tue, 2024-12-03 22:49

 This video shows how to locally install Indic Parler-TTS which can officially speak in 20 Indic languages.





Code:

conda create -n ai python=3.11 -y && conda activate ai

sudo apt-get install libportaudio2
conda install -c anaconda pyaudio

pip install torch torchaudio einops timm pillow
pip install git+https://github.com/huggingface/transformers
pip install git+https://github.com/huggingface/accelerate
pip install git+https://github.com/huggingface/diffusers
pip install huggingface_hub
pip install sentencepiece bitsandbytes protobuf decord
pip install librosa peft numpy

pip install git+https://github.com/huggingface/parler-tts.git


conda install -c conda-forge --override-channels notebook -y
conda install -c conda-forge --override-channels ipywidgets -y
jupyter notebook

import torch
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf

device = "cuda:0" if torch.cuda.is_available() else "cpu"

model = ParlerTTSForConditionalGeneration.from_pretrained("ai4bharat/indic-parler-tts").to(device)
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-parler-tts")
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)

prompt = "अरे, तुम आज कैसे हो?"
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."

input_ids = description_tokenizer(description, return_tensors="pt").input_ids.to(device)
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)

generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("indic_tts_out.wav", audio_arr, model.config.sampling_rate)
Categories: DBA Blogs

Install HunyuanVideo Model Locally for Text to Video Generation

Tue, 2024-12-03 15:52

This video shows how to install HunyuanVideo AI model for text to video long generation locally.


Code:

git clone https://github.com/tencent/HunyuanVideo && cd HunyuanVideo

conda env create -f environment.yml

conda activate HunyuanVideo

conda install gcc_linux-64 gxx_linux-64 -y
conda install cuda -c nvidia -y

python -m pip install -r requirements.txt

pip install packaging
pip uninstall -y ninja && pip install ninja

python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.5.9.post1

huggingface-cli login  #get Read token from huggingface.co

huggingface-cli download tencent/HunyuanVideo --local-dir ./ckpts

cd HunyuanVideo/ckpts

huggingface-cli download xtuner/llava-llama-3-8b-v1_1-transformers --local-dir ./llava-llama-3-8b-v1_1-transformers

cd ..

python hyvideo/utils/preprocess_text_encoder_tokenizer_utils.py --input_dir ckpts/llava-llama-3-8b-v1_1-transformers --output_dir ckpts/text_encoder

cd HunyuanVideo/ckpts
huggingface-cli download openai/clip-vit-large-patch14 --local-dir ./text_encoder_2

cd HunyuanVideo

python3 sample_video.py \
    --video-size 720 1280 \
    --video-length 129 \
    --infer-steps 30 \
    --prompt "a cat is running, realistic." \
    --flow-reverse \
    --seed 0 \
    --use-cpu-offload \
    --save-path ./results



Categories: DBA Blogs

Embedding Model in Oracle Database 23ai - Step-by-step Hands-on Tutorial

Mon, 2024-12-02 21:54


This is a step-by-step hands-on tutorial to use Oracle AI Vector Search on unstructured data combined with relational search on business data.



conda create -n ai python=3.11 -y && conda activate ai

sudo chmod 666 /var/run/docker.sock

docker pull container-registry.oracle.com/database/free:latest

docker run -d --name oracle-db \
  -p 1521:1521 \
  --dns 8.8.8.8 \
  -e ORACLE_PWD="YourStrongPassword" \
  container-registry.oracle.com/database/free:latest

docker ps -a

mkdir mymodel && cd mymodel

wget https://adwc4pm.objectstorage.us-ashburn-1.oci.customer-oci.com/p/VBRD9P8ZFWkKvnfhrWxkpPe8K03-JIoM5h_8EJyJcpE80c108fuUjg7R5L5O7mMZ/n/adwc4pm/b/OML-Resources/o/all_MiniLM_L12_v2_augmented.zip

wget 'https://huggingface.co/datasets/muhrafli/heart-diseases/resolve/main/heart%20(3).csv'
mv 'heart (3).csv' heart.csv

unzip -oq all_MiniLM_L12_v2_augmented.zip

docker cp all_MiniLM_L12_v2.onnx oracle-db:/home/oracle/
docker cp heart.csv oracle-db:/home/oracle/

docker exec -it oracle-db bash

mkdir mymodel
mv all_MiniLM_L12_v2.onnx mymodel
mv heart.csv mymodel
cd mymodel

sqlplus sys/YourStrongPassword@localhost:1521/FREEPDB1 as sysdba

create user if not exists myuser identified by myuser quota unlimited on users;
grant create session, db_developer_role, create mining model to myuser;

create or replace directory model_dir as '/home/oracle/mymodel';
grant read, write on directory model_dir to myuser;

begin
  dbms_vector.drop_onnx_model (
    model_name => 'ALL_MINILM_L12_V2',
    force => true);

  dbms_vector.load_onnx_model (
    directory  => 'model_dir',
    file_name  => 'all_MiniLM_L12_v2.onnx',
    model_name => 'ALL_MINILM_L12_V2');
end;
/

column model_name format a30
column algorithm format a10
column mining_function format a15

select model_name, algorithm, mining_function
from   user_mining_models
where  model_name = 'ALL_MINILM_L12_V2';

set long 1000000
select vector_embedding(all_minilm_l12_v2 using 'hello' as data) AS my_vector;


-- Create table
drop table if exists heart_disease_data purge;

create table heart_disease_data as
select age, sex, chest_pain_type, resting_bp, cholesterol, fasting_bs, resting_ecg, max_hr, exercise_angina, oldpeak, st_slope, heart_disease
from   external (
         (
           age            number(3),
           sex            varchar2(10),
           chest_pain_type varchar2(10),
           resting_bp     number(5),
           cholesterol    number(10),
           fasting_bs     number(1),
           resting_ecg    varchar2(10),
           max_hr         number(5),
           exercise_angina varchar2(10),
           oldpeak        number(10,1),
           st_slope       varchar2(10),
           heart_disease  number(1)
         )
         type oracle_loader
         default directory model_dir
         access parameters (
           records delimited by newline
           skip 1
           badfile model_dir
           logfile model_dir:'heart_disease_data_ext_tab_%a_%p.log'
           discardfile model_dir
           fields csv with embedded terminated by ',' optionally enclosed by '"'
           missing field values are null
           (
             age,
             sex,
             chest_pain_type,
             resting_bp,
             cholesterol,
             fasting_bs,
             resting_ecg,
             max_hr,
             exercise_angina,
             oldpeak,
             st_slope,
             heart_disease
           )
        )
        location ('heart.csv')
        reject limit unlimited
      );

-- Describe table
desc heart_disease_data;

-- Add vector column
alter table heart_disease_data add (
  patient_vector vector
);

-- Describe table
desc heart_disease_data;

-- Populate vector column
update heart_disease_data
set    patient_vector = vector_embedding(all_minilm_l12_v2 using concat(age, sex, chest_pain_type, resting_bp, cholesterol, fasting_bs, resting_ecg, max_hr, exercise_angina, oldpeak, st_slope) as data);

commit;


-- Vector Search using VECTOR_DISTANCE
-- Search for patients with similar characteristics to "patient with high cholesterol and high blood pressure"

variable search_text varchar2(100);
exec :search_text := 'patient with high cholesterol and high blood pressure';

set linesize 200
column age format 999
column sex format a10
column chest_pain_type format a10
column resting_bp format 99999
column cholesterol format 9999999
column fasting_bs format 9
column resting_ecg format a10
column max_hr format 99999
column exercise_angina format a10
column oldpeak format 99999.9
column st_slope format a10
column heart_disease format 9

SELECT vector_distance(patient_vector, (vector_embedding(all_minilm_l12_v2 using :search_text as data))) as distance,
       age,
       sex,
       chest_pain_type,
       resting_bp,
       cholesterol,
       fasting_bs,
       resting_ecg,
       max_hr,
       exercise_angina,
       oldpeak,
       st_slope,
       heart_disease
FROM   heart_disease_data
order by 1
fetch approximate first 5 rows only;



-- Vector Search using VECTOR_DISTANCE
-- Search for patients with similar characteristics to "patient with chest pain and high heart rate"

variable search_text varchar2(100);
exec :search_text := 'patient with chest pain and high heart rate';

set linesize 200
column age format 999
column sex format a10
column chest_pain_type format a10
column resting_bp format 99999
column cholesterol format 9999999
column fasting_bs format 9
column resting_ecg format a10
column max_hr format 99999
column exercise_angina format a10
column oldpeak format 99999.9
column st_slope format a10
column heart_disease format 9

SELECT vector_distance(patient_vector, (vector_embedding(all_minilm_l12_v2 using :search_text as data))) as distance,
       age,
       sex,
       chest_pain_type,
       resting_bp,
       cholesterol,
       fasting_bs,
       resting_ecg,
       max_hr,
       exercise_angina,
       oldpeak,
       st_slope,
       heart_disease
FROM   heart_disease_data
order by 1
fetch approximate first 5 rows only;


========================
Cleanup:

docker stop oracle-db && docker rm oracle-db

docker images

docker rmi <image_id>
Categories: DBA Blogs

Create a Free Local AI Dungeon Game with Ollama

Sat, 2024-11-30 22:20

  This video shows how to create a dungeon and dragon game with help of local models with Ollama easily.


Code:


conda create -n ai python=3.10 -y && conda activate ai

mkdir mygame && cd mygame

pip install pydantic==2.8.2 gradio==4.44.1 ollama

system_prompt = f"""
Your job is to help create interesting futuristic worlds that \
players would love to explore.
Instructions:
- Only generate in plain text without formatting.
- Use simple clear language without being overly technical.
- You must stay below 3-5 sentences for each description.
"""

world_prompt = f"""
Generate a creative description for a unique futuristic world with an
interesting concept around humans colonizing new planets in a distant galaxy.

Output content in the form:
World Name: <WORLD NAME>
World Description: <WORLD DESCRIPTION>

World Name:"""

import os
import json
from ollama import chat
from ollama import ChatResponse

response: ChatResponse = chat(model='llama3.2',
    messages=[
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": world_prompt}
    ]
)

world_output = response['message']['content']
print(world_output)

world_output = world_output.strip()
world = {
    "name": world_output.split('\n')[0].strip()
    .replace('World Name: ', ''),
    "description": '\n'.join(world_output.split('\n')[1:])
    .replace('World Description:', '').strip()
}

kingdom_prompt = f"""
Create 3 different colonies for a futuristic world.
For each colony describe the leaders, societal structures, and notable achievements.

Output content in the form:
Colony 1 Name: <COLONY NAME>
Colony 1 Description: <COLONY DESCRIPTION>
Colony 2 Name: <COLONY NAME>
Colony 2 Description: <COLONY DESCRIPTION>
Colony 3 Name: <COLONY NAME>
Colony 3 Description: <COLONY DESCRIPTION>

World Name: {world['name']}
World Description: {world['description']}

Colony 1"""

response: ChatResponse = chat(model='llama3.2',
    messages=[
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": kingdom_prompt}
    ]
)

kingdoms = {}
kingdoms_output = response['message']['content']

for output in kingdoms_output.split('\n\n'):
  kingdom_name = output.strip().split('\n')[0] \
    .split('Name: ')[1].strip()
  print(f'Created colony "{kingdom_name}" in {world["name"]}')
  kingdom_description = output.strip().split('\n')[1] \
    .split('Description: ')[1].strip()
  kingdom = {
      "name": kingdom_name,
      "description": kingdom_description,
      "world": world['name']
  }
  kingdoms[kingdom_name] = kingdom
world['kingdoms'] = kingdoms

print(f'\nColony 1 Description: \
{kingdom["description"]}')


def get_town_prompt(world, kingdom):
    return f"""
    Create 3 different starports for a futuristic colony and world. \
    Describe the region they're in, important facilities, \
    and notable history.
   
    Output content in the form:
    Starport 1 Name: <STARPORT NAME>
    Starport 1 Description: <STARPORT DESCRIPTION>
    Starport 2 Name: <STARPORT NAME>
    Starport 2 Description: <STARPORT DESCRIPTION>
    Starport 3 Name: <STARPORT NAME>
    Starport 3 Description: <STARPORT DESCRIPTION>
   
    World Name: {world['name']}
    World Description: {world['description']}
   
    Colony Name: {kingdom['name']}
    Colony Description {kingdom['description']}
   
    Starport 1 Name:"""


def create_towns(world, kingdom):
    print(f'\nCreating starports for colony: {kingdom["name"]}...')
    response: ChatResponse = chat(model='llama3.2',
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": get_town_prompt(world, kingdom)}
        ]
    )  
    towns_output = response['message']['content']
   
    towns = {}
    for output in towns_output.split('\n\n'):
        town_name = output.strip().split('\n')[0]\
        .split('Name: ')[1].strip()
        print(f'- {town_name} created')
       
        town_description = output.strip().split('\n')[1]\
        .split('Description: ')[1].strip()
       
        town = {
          "name": town_name,
          "description": town_description,
          "world": world['name'],
          "kingdom": kingdom['name']
        }
        towns[town_name] = town
    kingdom["towns"] = towns
   
for kingdom in kingdoms.values():
    create_towns(world, kingdom)  

town = list(kingdom['towns'].values())[0]
print(f'\nStarport 1 Description: \
{town["description"]}')

def get_npc_prompt(world, kingdom, town):
    return f"""
    Create 3 different characters based on the world, colony, \
    and starport they're in. Describe the character's appearance and \
    role, as well as their motivations and challenges.
   
    Output content in the form:
    Character 1 Name: <CHARACTER NAME>
    Character 1 Description: <CHARACTER DESCRIPTION>
    Character 2 Name: <CHARACTER NAME>
    Character 2 Description: <CHARACTER DESCRIPTION>
    Character 3 Name: <CHARACTER NAME>
    Character 3 Description: <CHARACTER DESCRIPTION>
   
    World Name: {world['name']}
    World Description: {world['description']}
   
    Colony Name: {kingdom['name']}
    Colony Description: {kingdom['description']}
   
    Starport Name: {town['name']}
    Starport Description: {town['description']}
   
    Character 1 Name:"""

def create_npcs(world, kingdom, town):
    print(f'\nCreating characters for the starport of: {town["name"]}...')
    response: ChatResponse = chat(model='llama3.2',
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": get_npc_prompt(world, kingdom, town)}
        ]
    )
       
    npcs_output = response['message']['content']
    npcs = {}
    for output in npcs_output.split('\n\n'):
        lines = output.strip().split('\n')
        if len(lines) < 2:
            print(f"Warning: skipping invalid NPC output - {output}")
            continue
        npc_name_line = lines[0]
        if "Name: " not in npc_name_line:
            print(f"Warning: skipping invalid NPC output - {output}")
            continue
        npc_name = npc_name_line.split('Name: ')[1].strip()
        npc_description = ""
        for line in lines[1:]:
            if "Description: " in line:
                npc_description = line.split('Description: ')[1].strip()
            elif "Motivations and Challenges: " in line:
                npc_description += "\n" + line.split('Motivations and Challenges: ')[1].strip()
        print(f'- "{npc_name}" created')
       
        npc = {
        "name": npc_name,
        "description": npc_description,
        "world": world['name'],
        "kingdom": kingdom['name'],
        "town": town['name']
        }
        npcs[npc_name] = npc
    town["npcs"] = npcs


for kingdom in kingdoms.values():
    for town in kingdom['towns'].values():
        create_npcs(world, kingdom, town)
  # For now we'll only generate npcs for one kingdom
    break

npc = list(town['npcs'].values())[0]

print(f'\nNPC 1 in {town["name"]}, \
{kingdom["name"]}:\n{npc["description"]}')
   

def save_world(world, filename):
    with open(filename, 'w') as f:
        json.dump(world, f)

def load_world(filename):
    with open(filename, 'r') as f:
        return json.load(f)

save_world(world, 'MyWorld.json')

import gradio as gr
import os
demo = None #added to allow restart

def start_game(main_loop, share=False):
    # added code to support restart
    global demo
    # If demo is already running, close it first
    if demo is not None:
        demo.close()

    demo = gr.ChatInterface(
        main_loop,
        chatbot=gr.Chatbot(height=250, placeholder="Type 'start game' to begin"),
        textbox=gr.Textbox(placeholder="What do you do next?", container=False, scale=7),
        title="AI RPG",
        # description="Ask Yes Man any question",
        theme="soft",
        examples=["Look around", "Continue the story"],
        cache_examples=False,
        retry_btn="Retry",
        undo_btn="Undo",
        clear_btn="Clear",
                           )
    demo.launch(share=share, server_name="0.0.0.0")

def test_main_loop(message, history):
    return 'Entered Action: ' + message

start_game(test_main_loop)


world = load_world('MyWorld.json')
kingdom = world['kingdoms']['Aurora Isles']
town = kingdom['towns']["Helios Landing"]
character = town['npcs']['Dr. Lyra Flynn']

system_prompt = """You are an AI Game master. Your job is to create a
start to an adventure based on the world, colony, starport, and character
a player is playing as.
Instructions:
You must only use 2-4 sentences \
Write in second person. For example: "You are Alex" \
Write in present tense. For example "You are standing..." \
First describe the character and their background. \
Then describe where they start and what they see around them."""
world_info = f"""
World: {world}
Kingdom: {kingdom}
Town: {town}
Your Character: {character}
"""

response: ChatResponse = chat(model='llama3.2',
    messages=[
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": world_info + '\nYour Start:'}
    ]
)

start = response['message']['content']
print(start)
world['start'] = start
save_world(world, 'MyWorld.json')


def run_action(message, history, game_state):
   
    if(message == 'start game'):
        return game_state['start']

    system_prompt = """You are an AI Game master. Your job is to write what \
happens next in a player's adventure game.\
Instructions: \
You must only write 1-3 sentences in response. \
Always write in second person present tense. \
Ex. (You approach the control panel...)"""
   
    world_info = f"""
World: {game_state['world']}
Kingdom: {game_state['kingdom']}
Town: {game_state['town']}
Your Character:  {game_state['character']}"""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": world_info}
    ]
    for action in history:
        messages.append({"role": "assistant", "content": action[0]})
        messages.append({"role": "user", "content": action[1]})

    messages.append({"role": "user", "content": message})

    response: ChatResponse = chat(model='llama3.2',
        messages=messages
    )
   
    result = response['message']['content']
    return result
   
       
game_state = {
    "world": world['description'],
    "kingdom": kingdom['description'],
    "town": town['description'],
    "character": character['description'],
    "start": start,
}

def main_loop(message, history):
    return run_action(message, history, game_state)
Categories: DBA Blogs

Free ComfyUI WorkFlows for Various AI Models

Sat, 2024-11-23 00:59

ComfyUI is a user-friendly, node-based interface for Stable Diffusion. It allows you to create custom image generation workflows by connecting different functional blocks, known as "nodes".

 Following is the link to collection of free comfyUI workflows I use on my YT Channel videos:

fahdmirza/comfyuiworkflows


I hope that helps. 

Categories: DBA Blogs

Favorite Feature in Oracle 23ai

Sun, 2024-11-17 21:35

 In today's data-driven world, businesses rely on robust databases to manage their mission-critical workloads. Oracle Database 23ai Free offers a streamlined experience of this industry-leading database, with resource limits of up to 2 CPUs for foreground processes, 2 GB of RAM, and 12 GB of user data on disk. This free version is designed for ease of use and simple download, making it an ideal starting point for exploring the capabilities of Oracle Database.


A key feature that sets Oracle Database 23ai apart is its AI Vector Search capability. But what exactly are vectors? In simple terms, vectors are mathematical representations of data that capture complex relationships and patterns. They are a way to encode data, such as text, images, or audio, into numerical values that can be easily processed and analyzed by machines. Vectors enable computers to understand the semantic meaning and context of data, allowing for more accurate and efficient searching and analysis.


Vector search takes this concept a step further. It is a technique used to quickly identify similar data points within a vast dataset. Traditional search methods rely on keyword matching or exact phrase searches, but vector search enables more nuanced and intuitive queries. By comparing the vector representations of different data points, vector search can identify patterns and relationships that would be missed by traditional search methods.

Oracle AI Vector Search builds on this technology, introducing a converged database capability that revolutionizes the way businesses interact with their data. 


By storing vectors as a native data type and utilizing vector indexes and SQL functions, AI Vector Search enables fast and simple similarity search queries on both structured and unstructured data. This means that customers can quickly identify similar information across documents, images, and other unstructured data sources. Furthermore, AI Vector Search allows prompts to large language models (LLMs) to be augmented with private business data or domain knowledge, unlocking new possibilities for data-driven insights and decision-making.


With Oracle AI Vector Search, businesses can unlock the full potential of their data, uncovering hidden patterns and relationships that drive innovation and growth. Whether you're working with text, images, or other data types, Oracle Database 23ai's AI Vector Search capability is poised to transform the way you search, analyze, and interact with your data.

Insallation:

Intall it with Docker:

docker pull container-registry.oracle.com/database/free:latest

Install it with Oracle VirtualBox:

Oracle_Database_23ai_Free_Developer.ova

Install it with Linux / Windows:

oracle-database-free-23ai-1.0-1.el8.x86_64.rpm
WINDOWS.X64_236000_free.zip

Connecting to Oracle Database Free:

For PDB: sqlplus sys@localhost:1521/FREEPDB1 as sysdba
For CDB: sqlplus sys@localhost:1521/FREE as sysdba

In Python:

import oracledb

conn = oracledb.connect(user="[Username]", password="[Password]", dsn="localhost:1521/FREEPDB1")
with conn.cursor() as cur:
   cur.execute("SELECT 'Hello World!' FROM dual")
   res = cur.fetchall()
   print(res)
   
In Go:

package main
     
import (
      "fmt"
      "log"
      "database/sql"
      _ "github.com/godror/godror"
)
     
func main() {  
     
      // connectString format: [hostname]:[port]/[DB service name]
     
      dsn := `user="[Username]"
              password="[Password]"
              connectString="localhost:1521/FREEPDB1"`  
     
      db, err := sql.Open("godror", dsn)
      if err != nil {
        panic(err)
      }
      defer db.Close()
     
      rows, err := db.Query("SELECT 'Hello World!' FROM dual")
      if err != nil {
        panic(err)
      }
      defer rows.Close()
     
      var strVal string
      for rows.Next() {
        err := rows.Scan(&strVal)
        if err != nil {
          log.Fatal(err)
        }
        fmt.Println(strVal)
      }
      err = rows.Err()
      if err != nil {
        log.Fatal(err)
      }
     
}  
Categories: DBA Blogs

Oracle Database 23ai and GraphQL

Sun, 2024-11-17 17:12

 In today's data-driven world, AI needs fuel to power innovative applications. Oracle Database 23ai brings AI directly to your data, making it effortless to develop cutting-edge apps and tackle mission-critical tasks. But what makes this possible? Enter GraphQL, a game-changing query language that's changing the way we interact with data.

GraphQL is an open-source data query and manipulation language developed by Facebook in 2015. It allows clients to specify exactly what data they need, eliminating unnecessary requests and improving performance. GraphQL's declarative nature makes it a perfect fit for modern, data-driven applications. Its history is impressive, with Facebook open-sourcing it in 2015, followed by widespread adoption by tech giants like GitHub, Pinterest, and Airbnb.

GraphQL solves several pain points that have plagued developers for years. By allowing clients to receive only requested data, GraphQL reduces data transfer and minimizes bandwidth usage. This results in improved performance, as fewer requests and optimized data retrieval lead to faster responses. Additionally, GraphQL supports multiple data sources, making integration seamless. Its self-documenting nature and intuitive queries simplify development, making it a favorite among developers.

Traditionally, relational databases like Oracle used SQL for querying. However, SQL can be restrictive, requiring multiple queries to fetch related data. GraphQL changes this by enabling simplified complex queries and real-time data retrieval. This makes it perfect for applications requiring instant updates. Oracle's integration of GraphQL into its database takes this power to the next level, offering native support, optimized queries, and robust security features.

With Oracle Database 23ai and GraphQL, developers can build innovative applications faster and more efficiently. GraphQL's nested queries and relationships make fetching complex data easier, while Oracle's database engine optimizes queries for peak performance. This powerful combination enables developers to focus on building exceptional user experiences.

Imagine querying a movie database to get personalized recommendations. With GraphQL, you can fetch exactly what you need. For example:

Here are some examples:

Query 1: Get Movie Details

query Movies {
    movies {
        title
        director
        genres
        cast {
            actor_name
            character_name
        }
    }
}

Query 2: Find Movies by Actor

query MoviesByActor {
    movies {
        title
        release_year
        actors {
            actor_name
            movies_actor_id {
            title
        }
    }
}
}

Query 3: Discover Movie Recommendations

query Recommendations {
    movies {
    title
    rating
    similar_movies {
        title
        genre
        }
    }
    }


These examples illustrate the potential of Oracle Database 23ai and GraphQL. By combining AI-powered data analysis with intuitive querying, developers can unlock new possibilities in application development.


With Oracle Database 23ai and GraphQL, building innovative movie apps is faster, easier, and more powerful than ever.


Hope this helps.

Categories: DBA Blogs

Session Monitoring and Session Cleanup in Oracle

Sat, 2024-11-16 23:53

 As an Oracle database administrator, managing sessions is crucial for maintaining performance and availability. This script provides a comprehensive solution for monitoring and cleaning up idle and blocking sessions.


The script identifies blocking sessions exceeding a specified threshold (default: 60 minutes), kills them, and sends notification emails. It also identifies idle sessions exceeding a specified threshold (default: 60 minutes), kills them, and sends notification emails. Key components include session identification using V$SESSION , V$PROCESS , and V$TRANSACTION , threshold settings, notification email functionality using TRACK.SEND_EMAIL , and error handling.

To implement this script, you'll need to declare variables for threshold settings (minutes), notification lists, and other necessary variables. The script then monitors blocking sessions using a FOR loop, killing each blocking session and sending notifications. A similar loop monitors idle sessions.

DECLARE
  -- Threshold settings (minutes)
  in_blocker_threshold_minutes NUMBER := 60;
  in_idle_threshold_minutes NUMBER := 60;
 
  -- Notification list
  in_notification_list VARCHAR2(100) := 'your_email@example.com';
 
  -- Other variables
  v_Body CLOB;
  any_blockers_killed NUMBER := 0;
  any_idlers_killed NUMBER := 0;
 
BEGIN
  -- Monitor blocking sessions
  FOR bses IN (
    SELECT s.sid, s.serial#, p.spid, s.username, s.program, machine, osuser,
           logon_time, last_call_et,
           NVL(sbc.ses_blocking_cnt, 0) ses_blocking_cnt,
           NVL2(t.used_ublk, TO_CHAR(used_ublk), 'none') used_ublk, sa.sql_text last_command
    FROM v$session s, v$process p, v$transaction t, v$sqlarea sa,
         (SELECT blocking_session, COUNT(*) ses_blocking_cnt FROM v$session
          WHERE blocking_session IS NOT NULL GROUP BY blocking_session) sbc
    WHERE last_call_et > in_blocker_threshold_minutes * 60
      AND s.username IS NOT NULL
      AND s.type <> 'BACKGROUND'
      AND s.blocking_session IS NULL
  ) LOOP
    -- Kill blocking session and send notification
    BEGIN
      EXECUTE IMMEDIATE 'ALTER SYSTEM KILL SESSION ''' || bses.sid || ',' || bses.serial# || ''' IMMEDIATE';
      any_blockers_killed := 1;
    EXCEPTION
      WHEN MARKED_FOR_KILL THEN
        DBMS_OUTPUT.PUT_LINE(bses.sid || ',' || bses.serial# || ' marked for kill.');
    END;
  END LOOP;
 
  -- Monitor idle sessions
  FOR ises IN (
    SELECT s.sid, s.serial#, p.spid, s.username, s.program, machine, osuser,
           logon_time, last_call_et,
           NVL(sbc.ses_blocking_cnt, 0) ses_blocking_cnt,
           NVL2(t.used_ublk, TO_CHAR(used_ublk), 'none') used_ublk, sa.sql_text last_command
    FROM v$session s, v$process p, v$transaction t, v$sqlarea sa,
         (SELECT blocking_session, COUNT(*) ses_blocking_cnt FROM v$session
          WHERE blocking_session IS NOT NULL GROUP BY blocking_session) sbc
    WHERE last_call_et > in_idle_threshold_minutes * 60
      AND s.username IS NOT NULL
      AND s.type <> 'BACKGROUND'
  ) LOOP
    -- Kill idle session and send notification
    BEGIN
      EXECUTE IMMEDIATE 'ALTER SYSTEM KILL SESSION ''' || ises.sid || ',' || ises.serial# || ''' IMMEDIATE';
      any_idlers_killed := 1;
    EXCEPTION
      WHEN MARKED_FOR_KILL THEN
        DBMS_OUTPUT.PUT_LINE(ises.sid || ',' || ises.serial# || ' marked for kill.');
    END;
  END LOOP;
 
  -- Send notification emails
  IF any_blockers_killed = 1 OR any_idlers_killed = 1 THEN
    TRACK.SEND_EMAIL('oracle@your_host', in_notification_list, 'Killed sessions on your_instance', '<pre>' || v_Body || '</pre>');
  END IF;
 
EXCEPTION
  WHEN OTHERS THEN
    DBMS_OUTPUT.PUT_LINE('Error checking idle and blocking sessions in your_instance');
    TRACK.SEND_EMAIL('oracle@your_host', in_notification_list, 'Error checking idle and blocking sessions in your_instance', '<pre>' || SQLERRM || '</pre>');
    RAISE;
END;
/


To maximize the effectiveness of this script, consider the following best practices:

  • Schedule the script to run regularly (e.g., every 30 minutes).
  • Adjust threshold settings according to your database requirements.
  • Monitor notification emails for killed sessions.
Hope this helps.

Categories: DBA Blogs

Tencent Hunyuan3D-1 - Install Locally - 3D Generation AI Model from Text

Mon, 2024-11-11 15:21

 This video shows how to locally install Tencent Hunyuan3D-1 model for 3D generation.



Code:

conda create -n ai python=3.9 -y && conda activate ai

conda remove cuda-compiler
conda install gcc_linux-64=11.2.0 gxx_linux-64=11.2.0 -y

conda install cuda=11.8 -c nvidia -y

conda install pytorch=2.0.1 torchvision==0.15.2 pytorch-cuda=11.8 -c pytorch -c nvidia -y

conda install -c iopath iopath -y
conda install -c bottler nvidiacub -y
conda install pytorch3d -c pytorch3d -y
conda install anaconda::cmake -y
conda install conda-forge::lit-nlp -y
conda install anaconda::numpy=1.23.5 -y

git clone https://github.com/tencent/Hunyuan3D-1 && cd Hunyuan3D-1


#From below remove, pytorch3 from env_install.sh file.
chmod a+x env_install.sh
./env_install.sh

pip install huggingface_hub
huggingface-cli login  


mkdir weights
huggingface-cli download tencent/Hunyuan3D-1 --local-dir ./weights

mkdir weights/hunyuanDiT
huggingface-cli download Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled --local-dir ./weights/hunyuanDiT

python3 main.py --text_prompt "a lovely rabbit" --save_folder ./outputs/test/ --max_faces_num 90000 --do_texture_mapping --do_render

python3 main.py --image_prompt "/home/Ubuntu/images/komodo.png" --save_folder ./outputs/test/ --max_faces_num 90000 --do_texture_mapping --do_render
Categories: DBA Blogs

How-To Resolve Enqueue Errors in Any Version of Oracle Database

Mon, 2024-11-04 23:45

 As an Oracle database administrator, you've likely encountered errors that make your heart skip a beat. One such error is ORA-00240: control file enqueue held for more than 120 seconds. But before you panic, let's break down what this error means and how to address it.

This error occurs when the control file enqueue is held for an extended period (over 120 seconds). The control file is a critical component of the Oracle database, managing database structure and integrity.

If you see this error occasionally, and your instance remains up and running, it's likely a fleeting glitch. Ignore it and move on.

However, if:

  • The error occurs frequently
  • Your instance hangs or crashes
  • Performance is severely impacted

You need to be worried about it.

In my experience, ORA-00240 can be triggered by:

  • High session counts conflicting with OS ulimits
  • Shared pool latch contention (as noted in some MOS documents)
  • Bugs in the Oracle software (resolvable with PSUs or one-off patches)

You should be checking:

  • Check alert logs for frequency and patterns.
  • Verify OS ulimits are adequately set.
  • Monitor shared pool latch contention using

SELECT
  NAME,
  GETS,
  WAITS,
  IMP_GETS,
  IMP_WAITS
FROM
  V$LATCH
WHERE
  NAME = 'shared pool';

Don't panic over occasional ORA-00240 errors. However, frequent occurrences warrant immediate attention. By understanding the causes and taking proactive steps, you'll minimize downtime and ensure your Oracle database runs smoothly.

Categories: DBA Blogs

Pages