Kuassi Mensah

Subscribe to Kuassi Mensah feed
Oracle Database Integration with Java, JavaScript, Hadoop, Spark I - Java in the database, JDBC, UCP, DRCP, Application Continuity, Transaction Guard II - Oracle Datasource for Hadoop (OD4H), In-Database Container for Hadoop, Orale Datasource for Spark III - JavaScript Stored Procedures using Nashorn All topics discussed here represent my own opinions and speculations.Kuassi Mensahhttp://www.blogger.com/profile/17181349306854451284noreply@blogger.comBlogger108125
Updated: 5 hours 55 min ago

Java Development with Autonomous Transaction Processing Dedicated (ATP-D)

Tue, 2019-10-01 18:20
The Oracle Autonomous Transaction Processing Dedicated (ATP-D) is a database Cloud service which allows implementing a private database Cloud service running on dedicated Exadata Infrastructure within the Oracle Public Cloud. The goal of this blog article is to help you, Java developer or architect, build and deploy fast, scalable, and reliable Java applications with ATP-D, using plain Java, Java Servlets, or Java Microservices with WebLogic, Helidon, WebSphere, Liberty, Tomcat, WildFly (JBoss), Spring, and so on.



Please read the full blog post @ https://medium.com/oracledevs/java-development-with-autonomous-transaction-processing-dedicated-atp-d-f0355a2f9abd

Oracle JDBC drivers on Maven Central

Tue, 2019-10-01 18:04


At last!
Yes, you asked for it, and with some delay (better late than ..), we did it!
Maven Central becomes a distribution center for the Oracle JDBC drivers. We started with the latest release 19.3.0.0 but will soon add previous and supported releases.
Read the full post @ https://medium.com/oracledevs/oracle-jdbc-drivers-on-maven-central-64fcf724d8b

OracleCode One 2019 - My Sessions Pick

Fri, 2019-08-09 18:14
OracleCode One 2019 is few weeks ahead and like many, you have not yet made up your mind on which sessions to attend or why attend?

Here is a selection of sessions that I highly recommend (full disclosure, I am involved in these sessions).




And you don't want to miss this exciting hands-on lab
See you there.

Slides from SV JUG Jul-18th Meetup

Thu, 2018-07-19 14:28
SV JUGers, it was a great Meetup.
The slides are here.

Enjoy!

Optimizing the Performance & Scalability of Java Applications that use an RDBMS

Thu, 2018-03-29 12:40
PreambleThere is an abundant literature on Java performance (books, articles, blogs, websites, and so on); a Google search returns more than 5 millions hits. To name a few, the Effective Java programming language guide, Java Performance the definitive guide, Java performance tuning newsletter and associated http://www.javaperformancetuning.com website. This is not the purpose of this post.

The goal of this post is to revisit the known best practices for speeding up and scaling database operations for Java applications then discuss database proxy and the upcoming standard Java API for asynchronous database access (ADBA).

Even those familiar with Java optimization techniques will learn new tips!
Speeding up Java applications that use an RDBMS
Optimizing database operations for Java applications includes: speeding up database connectivity, speeding up SQL statements processing, optimizing network traffic, and in-place processing. 
Speeding up Database Connectivity
Connection establishment is the most expensive database operation; the obvious optimization that
Java developers have been using for ages is connection pooling which avoids creating connections at
 runtime. 

Client-side Connection Pools

Java connection pools such as the Apache Commons DBCP, C3P0, as well as the Oracle  
Universal Connection Pool (UCP) and many others,  run along the JDBC libraries either stand-alone 
within the JDK/JRE or as part of Java EE containers datasources (e.g., Tomcat, Weblogic, WebSphere
and others). Java EE containers usually furnish their own connection pools but they also allow
 replacing theirs with 3rd party pools (see using UCP with Tomcat, UCP with Weblogic). 

Most Java developers use these client-side or mid-tier connection pools for sustaining small and
 medium workloads however, these connection pools are confined to the JRE/JDK instance
(i.e., can't be shared beyond the boundary of the JRE/JDK) and unpractical when deploying
thens of thousands of mid-tiers or Web servers. Even with very small pool size each, the RDBMS
 server  is overwhelmed by thens of thousands of pre-allocated connections that are predominantly
 idle (more than 90%).



Proxy Connection Pools

Proxy connection pools such as MySQL Router, Oracle Database Connection Manager in Traffic
 Director Mode (CMAN-TDM), and others, are part of proxy servers that sit between the database
 clients (i.e., Java apps) and the RDBMS. These allow thousands of database clients to share a 
common connection pool. I will discuss this a bit more, near the end of this post.

The Oracle database also furnishes database-side connection pools such as  the Shared Servers
and the Database Resident Connection Pool (DRCP). We will not discuss those in this post.

Other connection optimization features include: deferring connection health check and the 
de-prioritization of failed nodes.
Deferring Connection Health Check

The ability of a connection pool such as Oracle's Universal Connection Pool (UCP) to avoid
checking the health of connections for a defined period of time, improves the latency of
connection check-out (i.e., getConnection() returns faster).

De-prioritization of Failed Nodes
In a multi-instances clustered database environment such as Oracle RAC,  this JDBC feature assigns
a low priority to a failed instance for a user-defined period of time thereby reducing the connection
establishment latency (iow, avoid attempting to get connections from the failed instance).
Optimizing Statements Processing
The default COMMIT mode with JDBC is Auto-COMMIT; unless this corresponds to your desire, 
you should explicitly disable Auto-COMMIT on the connection object.

conn.setAutoCommit(false);


Processing a SQL statement requires several steps including: parsing, binding variables, executing,
fetching resultSets (if a query), and COMMITting or ROLLBACKing the transaction (if a DML
i.e., Insert, Update, or Delete). 

Java developers have several options for optimizing SQL statements processing including: 
Prepared Statements, Statements Caching, ResultSets caching with change notification.


Prepared Statements

Parsing (i.e., hard parsing) is the most expensive operation during the processing of a SQL statement.
The best practices consists in avoiding parsing by using Prepared Statements which are parsed only
 once then reused on subsequent invocations, after binding variables. A security byproduct of 
Prepared Statements is to prevent SQL injection.

https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html
Statements Caching

Statement caching significantly improves performance.  The JDBC driver caches the SQL statements 
(PreparedStatements and CallableStatements) on close, using an LRU algorithm then refers
the RDBMS to the parsed form in its library cache (i.e., "use statement #2)during subsequent
invocations of the same statement.  Enabled by setting  Implicit statement caching  to true and
 allocating a statement cache in the driver memory (i.e., an array per physical connection).

  
OracleDataSource ods = new OracleDataSource(); 
... 
ods.setImplicitCachingEnabled( true ); 

ods.setStmtCacheSize(nn);

...

ResultSets Caching with Change Notification - the Hard Way (JDBC-OCI)

Caching JDBC result sets avoids re-executing the corresponding SQL query, resulting in dramatic
Java applications performance. RDBMSes allow caching ResultSet at the server side but the 
applications needs a roundtrip to the database to get these. Optimizing further, these result set can be
pushed to the drivers (JDBC, C/C++, PHP, C#, and so on) and grabbed by the applications without 
database roundtrips. 
What if the ResultSets become stale, out of sync with the actual RDBMS data? RDBMSes 
furnish mechanisms to maintain the ResultSets, up to date. For example, the Oracle database Query
Change Notifications allows registering a SQL query with the RDBMS and receiving notifications
when committed DMLs from other threads render the ResultSets out of sync. 

Java applications may explicitly implement ResultSet caching with change notification through the 
following steps:

Prerequisite: grant CHANGE NOTIFICATION to the schema (i.e., database user); 
 grant change notification to HR;  // might need your DBA's help.

1) Create a registration


OracleConnection conn = ods.getConnection();
Properties prop = new Properties();
prop.setProperty(OracleConnection.DCN_NOTIFY_ROWIDS, "true");
prop.setProperty(OracleConnection.DCN_QUERY_CHANGE_NOTIFICATION,"true");
   ...
    DatabaseChangeRegistration dcr = conn.registerDatabaseChangeNotifictaion(prop);
    ...

2) Associate a query with the registration
  
  Statement stmt = conn.createStatement(); 
  // associating the query with the registration
  ((OracleStatement)stmt).setDatabaseChangeRegistration(dcr); 
  // any query that will be executed with the 'stmt' object will be associated with
  // the registration 'dcr' until 'stmt' is closed or 
  // '((OracleStatement)stmt).setDatabaseChangeRegistration(null);' is executed.
 ...



3) Listen to the notification
 ...
 // Attach the listener to the registration. 
 // Note: DCNListener is a custom listener and not a predefined or standard 
 // listener
 DCNListener list = new DCNListener(); dcr.addListener(list); 
 ...

 catch(SQLException ex) { 
 // if an exception occurs, we need to close the registration in order 
 // to interrupt the thread otherwise it will be hanging around. 
  if(conn != null) 
     conn.unregisterDatabaseChangeNotification(dcr); 
  throw ex; 
 }



ResultSets Caching with Change Notification - the Easy Way (JDBC-Thin with DB 18c)

You may also enable ResultSet caching with invalidation, in a much easier way, using the following
 steps (once JDBC-Thin in Oracle database 18c is available on-premise).

1) Set the following database parameters in the database configuration file also known as INIT.ORA

CLIENT_RESULT_CACHE_SIZE=100M // e.g., maximum cache size, in bytes
CLIENT_RESULT_CACHE_LAG=1000 // maximum delay for refreshing the cache (msec) 



2) Set the JDBC connection property oracle.jdbc.enableQueryResultCache to true (the default).



3) add the following hint to the SQL query string  "/*+ RESULT_CACHE */"

Example "SELECT /*+ RESULT_CACHE */ product_name, unit_price 
             FROM PRODUCTS WHERE unit_price > 100"

If changing the Java/JDBC source code to add the SQL hint is not an option, you can instruct the
 RDBMS to cache the ResultSets of all queries related to a specific table, either at table creation 
(default mode) or later (force mode); this is known as Table annotation.

Examples              

CREATE TABLE products (...) RESULT_CACHE (MODE DEFAULT);
   ALTER TABLE products RESULT_CACHE (MODE FORCE);

The RDBMS furnishes views such as the V$RESULT_CACHE_STATISTICS and
CLIENT_RESULT_CACHE_STATS$ table for monitoring the effectiveness of ResultSet caching.
See section 15  in the performance tuning guide for more details on configuring the server-side result 
set cache

Array Fetch

Array fetching is an absolute necessity when retrieving a large number of rows from a ResultSet.
The fetch size can be specified on Statement, PreparedStatement, CallableStatement, and 
ResultSet objects.
Example: pstmt.setFetchSize(20);



When using the Oracle database, this array size is capped by the RDBMS's internal buffer known as
Session Data Unit (SDU). The SDU buffer is used  for transferring data from the tables to the client, 
over the network. The size of this buffer, in bytes, can be specified in JDBC URL

      jdbc:oracle:thin:@(DESCRIPTION=(SDU=10240)
                     (ADDRESS=(PROTOCOL=tcp)(HOST=myhost-vip)(PORT=1521))
                     (CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))



or at the service level in Net Services configuration files sqlnet.ora and tnsnames.ora.
There is a hard limit depending on the RDBMS release: 2MB with DB 12c, 64K with DB 11.2,
 and 32K with DB pre-11.2.
In summary, even if you set the array fetch to a large number, it cannot retrieve more data than the
SDU permits.

Array DML (Update Batch)

The JDBC specification defines array operations as sending a batch of the same DML operations
(i.e.,  array INSERTs, array UPDATEs, array DELETE) for sequential execution at the server, thereby
 reducing network round-trips.

 Update Batching consists in explicitly invoking the addBatch methods which adds a statement to
 an array operation then explicitly calling executeBatch method. 

...
 PreparedStatement pstmt =
  conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");
pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();
pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();
int[] updateCounts = pstmt.executeBatch();

...

Optimizing Network TrafficNetwork Data Compression

The ability to compress data transmitted between the Java applications and the RDBMS over LAN or WAN reduces the volume of data, the transfert time and the number of roundtrips.

// Enabling Network Compression 
prop.setProperty("oracle.net.networkCompression","on"); 
// Optional configuration for setting the client compression threshold.
prop.setProperty("oracle.net.networkCompressionThreshold","1024"); ds.setConnectionProperties(prop); 
ds.setURL(url); 
Connection conn = ds.getConnection(); 
...

Sessions Multiplexing 

The Oracle database Connection Manager a.k.a. CMAN, furnishes the ability to funnel multiple database connections over a single network connection thereby saving OS resources.
In-Place ProcessingAs we have seen earlier, SQL statements execution involves a number of roundtrips between a database client i.e., Java mid-tier/web-server and the RDBMS; this is the rationales for using stored procedures. Even modern data processing such as Hadoop or Spark, collocate the processing and data for low latency.
All RDBMSes furnish stored procedures in various languages including proprietary procedural language such as Oracles PL/SQL but also Java, JavaScript, even PHP, Perl, Python, and TCL.
I discussed the pros and cons of stored procedures in chapter 1 of my book.
I'd add that in a modern Micro-services based architecture, stored procedures are perfect for designing data-bound services.

The Oracle database furnishes Java and PL/SQL stored procedures. Java in the database is one of the best Oracle database gem; see some code samples on GitHub.

Scaling Out Java Applications that use an RDBMS
In this section, I will discuss scaling Java applications using Sharded databases, Multitenant databases, database proxy and the upcoming asynchronous Java database access API.  
Horizontal Scaling of Java applications with Sharded DatabasesSharded database have been around for a while; think of shards as horizontal partitioning of tables across several databases (iow, partitions on steroids!).
The main impact for developers is that Java application must be Shard-aware; iow, the requirement to: (i) define which fields serve as sharding key, (ii) set the binding values and build the sharding key (and optionally, the super sharding key) before requesting a connection to the datasource. RDBMS vendors are actively working on a routing capability which will remove shard-awareness (see database proxy, later in this post).

Java SE 9 furnishes the standard APIs for building the sharding and supersharding keys.

DataSource ds = new MyDataSource();
ShardingKey shardingKey = ds.createShardingKeyBuilder()
.subkey("abc", JDBCType.VARCHAR)
.subkey(94002, JDBCType.INTEGER)
.build();
 ...
 Connection con = ds.createConnectionBuilder()
.shardingKey(shardingKey)
.build();

Depending on the RDBMS implementation, the map of shards keys across databases also know as shard topology is maintained by an external mechanism known as the "Shard Director" (in  Oracle database implementation). Without further optimization, all connection requests (with a mandatory sharding key) go to the Shard Director which finds the corresponding shard then a connection is established with that shard.

A Shared Pool for Sharded DBs

The Oracle Universal Connection Pool (UCP) furnishes a shared single pool for all shards.
UCP has been enhanced to transparently suck the shard map (i.e., all the keys that map to a specific shard), from the Shard Director, during the first connection to a specific shard. Once UCP gets the keys range, it no longer needs to go to the Shard Director for subsequent connections requests related to that shard. After a little while, assuming your Java application randomly accesses all shards, UCP will get the entire shard topology from the Shard Director. A high availability byproduct of UCP acting as the Shard Director is that shard-aware Java applications can work even if the Shard Director is down.
Scaling Java Applications with Multi-Tenant DatabasesMulti-tenancy is a key business requirement for enterprise Java applications. It could be simulated at the application level but true Multi-tenancy requires a Multi-tenant RDBMS where each tenant has it's own database.
Multi-tenant RDBMS scale by managing thousands of databases with one of very few database instances (an instance being the set of processes and memory structures necessary for managing a database), thereby reducing drastically the required computing resources.

How would Java applications scale with Multi-Tenant RDBMS?

A non Multi-tenant aware connection pool would allocate a pool per database, defeating the purpose.  UCP has been enhanced to use a single shared pool for all pluggable databases -- a.k.a. PDB (a PDB is the tenant specific database in Oracle's Multi-tenant architecture).
Upon a connection request to a specific PDB, if there is no free/available connection attached to that tenant database, UCP transparently repurposes an idle connection in the pool, which was attached to another PDB to be re-attached to this one, thereby allowing to use a small set of pooled connections to service all tenants while avoiding new connection creation (remember, this is very expensive!) and preserving system resources.
See the UCP doc for more details on using one datasource per tenant or a single datasource for all tenants.
Database proxy 
Proxies are man-in-the-middle software running between the database and its clients e.g., Java applications. There are several proxy offerings on the market; to name a few: MySQL Router, the Oracle Database Connection Manager in Traffic Director Mode (CMAN-TDM), ProxySQL, and so on.
The Oracle CMAN-TDM is new in Oracle database 18c; it is an extension of the existing Oracle Connection Manager a.k.a. CMAN and furnishes these new following capabilities
  • Fully transparent to applications
  • Routes database traffic to right instance (planned)
  • Hides database planned and unplanned outages to support zero application downtime
  • Optimizes database session usage and application performance 
  • Enhances database security
CMAN-TDM is client agnostic, iow, it supports all database clients applications including: Java, C, C++, DotNET, Node.js, Python, Ruby, R.
Java applications would connect to CMAN-TDM which, in its turn, connects to the database using the latest driver and libraries then transparently furnish the Quality of Service that the application would get only if it was using the latest driver and APIs

See more details in the CMAN landing page and the Net Services documentions linked from the landing page.
Asynchronous Java Database Access API (ADBA)
The existing JDBC API leads to blocked threads, threads scheduling, and contention; it is not suitable for reactive applications or high throughput and large-scale deployments. There exist non-standard asynchronous Java database access APIs but the Java community needs a standard one where user threads never block. User threads submit database operations and return; the API implementation takes care of executing the operations, independently of user threads.
This new API proposal is not intended to be an extension to, or a replacement for, JDBC but, rather, an entirely separate API that provides completely nonblocking access to the same databases as JDBC.


The new API proposal relies on the java.util.concurrent.CompletionStage interface; it is available for download from the OpenJDK sandbox @  http://tinyurl.com/java-async-db.
You can sed some examples in the latest JavaOne presentation @ http://bit.ly/2wi948k.

There was a suggestion on the mailing list http://mail.openjdk.java.net/pipermail/jdbc-spec-discuss/ to rather base he API on the Reactive Streams class java.util.concurrent.Flow; you can follow that discussion in the mailing list.

I would encourage all the readers of this blog to review the API and get involved in the discussion.
In order to help the community get a feel of ADBA, an alpha version of it that runs over the vanilla/synchronous JDBC -- that we are calling AoJ for ADBA over JDBC -- will be posted soon, along with a couple of working examples.
I will announce it, when available, on my social media streams including @kmensah, http://db360.blogspot.com/, https://www.linkedin.com/in/kmensah.
Resources

My Sessions Recommendations for JavaOne and Oracle Open World 2017

Mon, 2017-09-04 13:00
Good Day,

JavaOne, and Oracle Open World are 4 exactly weeks away.

Here are some sessions related to Java, JDBC, OJVM (database embedded JVM), JavaScript Nashorn (JavaSCript data access, JavaScript stored procedures), Apache Spark, Apache Hadoop, Apache Flink, Apache Beam that I'd warmly recommend.
JavaOne 2017 Sessions Recommendations
OpenWorld 2017 Sessions Recommendations

Carbonated Java & JavaScript Stored Procedures

Fri, 2017-05-26 17:43
Carbonated Java Stored ProceduresFor accessing JSON Collections and documents without any knowledge of SQL, Oracle furnishes the SODA for Java API. It allows a convenient access and navigation using the dot notation.

How to use SODA for Java in Java Stored Procedures? I have posted the steps, the code samples and scripts on GitHub.
Carbonated JavaScript Stored Procedures Nashorn allows interoperability between Java and javaScript. By leveraging such interoperability, I've bee able to reuse SODA for Java with JavaScript Stored Procedures.

How to use SODA for Java in JavaScript Stored Procedures? I have posted the steps, the code samples and scripts on GitHub.

Enjoy!

What's in Oracle Database 12c Release 2 for Java & JavaScript Developers?

Thu, 2017-03-02 19:53
Here is the summary of New Java & JavaScript Features in Oracle Database 12c Release 2 on Cloud and on-Premise

  • Java 8: Java 8 in JDBC/UCP and OJVM; JDBC 4.2
  • JavaScript with Nashorn: JDBC/UCP, OJVM
  • Performance: JIT (OJVM), Network Compression over WAN (JDBC), Configurable connection health check frequency (UCP), PL/SQL Callback interface (JDBC)
  • Scalability: Shared Pool for Multi-Tenant Database (UCP), Shared Pool for Sharded database (UCP), Sharding Key APIs (JDBC, UCP), DRCP Proxy session sharing, DRCP support for  multiple labels
  • High-Availability: Java APIs for FAN events (SimpleFan.jar), Planned Maintenance in the driver (JDBC), Application Continuity for XA Datasources, Transaction Guard for XA Datasource
  • Security: SSL v1.2 / TLS v 1.2 (JDBC)
  • Manageability: XMLconfiguration (UCP), Enable/disable/suspend/resume feature level logging (JDBC), MAX_THINK_TIME for Transactions in progress (DRCP), new statistics view and AWR reports  
  • Ease of Use : Web Services Callout (OJCM), Long Identifiers (OJVM), PL/SQL Boolean (JDBC), Debugger for OJVM (Java Debug Wire Protocol)
See our latest white paper for more details.

My Talks/Sessions at UKOUG Tech16

Fri, 2016-12-02 13:53
Hi guys,

If you plan to attend UKOUG Tech16, please check out my talks.sessions

  1.  Sunday 12/04 16:10  New JDBC & UCP Perf, Scalability & HA features in Oracle Database 12cR2 @
  2. Monday 12/05 17:55 A RESTful MicroService for JSON Processing in Oracle Database 12c R2 @  
  3. Wednesday 12/07 8:50 Hadoop, Spark & Flink Explained to Oracle DBAs & why They Should Care @ https://t.co/7CGLchAYAF
  4. Wednesday 12/07 15:10 Integrate BigData with Master Data: Oracle database table as Hadoop Datasource @
See you there



REST Enable Java or JavaScript in the Database

Wed, 2016-11-09 10:41
REST Enable Java or JavaScript in the Database
The Oracle REST Data Service (ORDS) allows you to turn Java stored procedures or JavaScript stored procedures into REST Web Services that you may publish these in the Oracle REST Data Service.
See more details @ http://www.oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html
Download and Configure ORDS
1) First step: download the latest ORDS  @ http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html

2) Extract the zip file in a directory say ../ords.3.0.8

3) Configure and Install

$ ls 
docs logs params examples ords.war readme.html

Navigate into params directory and edit the ords_params.properties file.
Modify the standalone.http.port value to a desired port # (e.g., 8090) and save the file.

$vi params/ords_params.properties
#Tue Jul 26 05:23:16 UTC 2016
db.hostname=
db.port=
db.servicename=
db.sid=
db.username=APEX_PUBLIC_USER
migrate.apex.rest=false
rest.services.apex.add=
rest.services.ords.add=true
schema.tablespace.default=SYSAUX
schema.tablespace.temp=TEMP
standalone.http.port=8090
standalone.static.images=
user.tablespace.default=USERS
user.tablespace.temp=TEMP
~
~
~
~
~
"params/ords_params.properties" 17L, 467C                     1,1           All

Note: Do not modify any other property

$ java -jar ords.war
This Oracle REST Data Services instance has not yet been configured.
Please complete the following prompts

Enter the location to store configuration data:/u01/oracle/ords.3.0.6/ordsi
Enter the name of the database server [localhost]:
Enter the database listen port [1521]:
Enter 1 to specify the database service name, or 2 to specify the database SID [1]:
Enter the database service name:pdb1
Enter the database password for ORDS_PUBLIC_USER:
Confirm password:
Please login with SYSDBA privileges to verify Oracle REST Data Services schema.

Enter the username with SYSDBA privileges to verify the installation [SYS]:
Enter the database password for SYS:Welcome1
Confirm password:Welcome1
Enter 1 if you want to use PL/SQL Gateway or 2 to skip this step.
If using Oracle Application Express or migrating from mod_plsql then you must enter 1 [1]:2
Sep 07, 2016 3:53:19 AM oracle.dbtools.common.config.file.ConfigurationFilesBase update
INFO: Updated configurations: defaults, apex_pu
Installing Oracle REST Data Services version 3.0.6.176.08.46
... Log file written to /u01/oracle/ords.3.0.6/logs/ords_install_core_2016-09-07_035319_00534.log
... Verified database prerequisites
... Created Oracle REST Data Services schema
... Created Oracle REST Data Services proxy user
... Granted privileges to Oracle REST Data Services
... Created Oracle REST Data Services database objects
... Log file written to /u01/oracle/ords.3.0.6/logs/ords_install_datamodel_2016-09-07_035342_00050.log
Completed installation for Oracle REST Data Services version 3.0.6.176.08.46. Elapsed time: 00:00:23.840

Enter 1 if you wish to start in standalone mode or 2 to exit [1]:1
Enter 1 if using HTTP or 2 if using HTTPS [1]:1
2016-09-07 03:54:28.867:INFO::main: Logging initialized @158428ms
Sep 07, 2016 3:54:29 AM oracle.dbtools.standalone.StandaloneJetty setupDocRoot
INFO: Disabling document root because the specified folder does not exist: /u01/oracle/ords.3.0.6/ordsi/ords/standalone/doc_root
2016-09-07 03:54:29.525:INFO:oejs.Server:main: jetty-9.2.z-SNAPSHOT
Sep 07, 2016 3:54:29 AM oracle.dbtools.auth.crypto.CryptoKeysGenerator startup
INFO: No encryption key found in configuration, generating key
Sep 07, 2016 3:54:29 AM oracle.dbtools.auth.crypto.CryptoKeysGenerator startup
INFO: No mac key found in configuration, generating key
Sep 07, 2016 3:54:29 AM oracle.dbtools.common.config.file.ConfigurationFilesBase update
INFO: Updated configurations: defaults
Sep 07, 2016 3:54:29 AM oracle.dbtools.auth.crypto.CryptoKeysGenerator startup
INFO: Updated configuration with generated keys
2016-09-07 03:54:29.793:INFO:/ords:main: INFO: Using configuration folder: /u01/oracle/ords.3.0.6/ordsi/ords
2016-09-07 03:54:29.793:INFO:/ords:main: FINEST: |ApplicationContext [configurationFolder=/u01/oracle/ords.3.0.6/ordsi/ords, services=Application Scope]|
Sep 07, 2016 3:54:29 AM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Validating pool: |apex|pu|
Sep 07, 2016 3:54:29 AM oracle.dbtools.common.config.db.DatabasePools validatePool
INFO: Pool: |apex|pu| is correctly configured
config.dir
2016-09-07 03:54:30.298:INFO:/ords:main: INFO: Oracle REST Data Services initialized|Oracle REST Data Services version : 3.0.6.176.08.46|Oracle REST Data Services server info: jetty/9.2.z-SNAPSHOT|
2016-09-07 03:54:30.305:INFO:oejsh.ContextHandler:main: Started o.e.j.s.ServletContextHandler@429bd883{/ords,null,AVAILABLE}
2016-09-07 03:54:30.346:INFO:oejs.ServerConnector:main: Started ServerConnector@b7f23d9{HTTP/1.1}{0.0.0.0:8090}
2016-09-07 03:54:30.348:INFO:oejs.Server:main:
Started @159913ms   
4) Allow your schema to use ORDS 

SQL> exec ords.enable_schema;
SQL> COMMIT;     

Define and Configure Your ORDS Service
Let's use the JavaScript procedure defined in an earlier blog post @
http://db360.blogspot.in/2016/11/javascript-in-oracle-database-12c.html

Rem Create a procedure based on the select.js and it's javax.script wrapper (see the previous blog post)
CREATE OR REPLACE PROCEDURE selectproc(id IN varchar2)
IS
output varchar2(10000);
BEGIN
SELECT invokeScriptEval(id) INTO output from dual;
htp.prn(output);
END;
/
SHOW ERRORS;

-- delete load.routes module
begin
ords_services.delete_module(
p_name => 'load.routes');
commit;
end;
/
SHOW ERRORS;

-- External JS select query
-- URL: load/routes/nashorn/select
-- procedure: selectproc
begin
ords.create_service(
p_module_name => 'load.routes' ,
p_base_path => '/load/routes/',
p_pattern => 'nashorn/selectbyid/:id',
p_source_type => 'plsql/block',
p_source => 'begin selectproc(:id); end;'
);
commit;
end;
/
SHOW ERRORS;

Let's use the JavaScript procedure defined in an earlier blog post 

Open your  web browser and navigate to  http://localhost:8090/ords/ordstest/load/routes/nashorn/selectbyid/100.




 You must see the JSON document of the employee with empid as 100 displayed.




That's it! You have just created your first ORDS service


The same process can be used tor Java stored procedures or other JavaScript procedures in the database.








My sessions recommendations for JavaOne '15 and OOW '15

Sun, 2015-09-27 14:52
JavaOne SF 2015  Session recommendations

High Availability with Java EE Containers, JDBC, and Java Connection Pools [BOF7732]
Monday, Oct 26, 8:00 p.m. | Parc 55—Mission

Implement Cloud Data Services with Java 8 Nashorn [CON4405]

Java Connection Pool Performance and Scalability with Wait-Free Programming [CON2158]
Wednesday, Oct 28, 4:30 p.m. | Hilton—Continental Ballroom 1/2/3


OOW SF 2015 - Session recommendations

Java Virtual Machine Cookbook [UGF2720]
Sunday, Oct 25, 9:00 a.m. | Moscone West—3011


Next-Generation Database: Implement Cloud Data Services with Java 8 Nashorn [CON8461]
Monday, Oct 26, 5:15 p.m. | Moscone South—308

Next-Generation Database: Java Connection Pool for Multitenant and Sharded Databases [CON8460]
Monday, Oct 26, 2:45 p.m. | Moscone South—308


Integrate Master Data with Big Data on Hadoop and Spark [CON8459]
Wednesday, Oct 28, 3:00 p.m. | Moscone South—308

Market Basket Analysis Using Oracle In-Database Container for Hadoop [CON8462]
Thursday, Oct 29, 12:00 p.m. | Moscone South—307

Next-Gen Database Enhancements for Java Application Performance and Scalability [CON10310]
Thursday, Oct 29, 2:30 p.m. | Moscone South—307


Dialog with the Oracle Database Java Developers and Architects [MTE9501]
Tuesday, Oct 27, 7:15 p.m. | Moscone South—305



JavaScript stored procedures as Cloud data services.

Tue, 2015-09-08 17:37
Find out how to implement JavaScript Stored Procedures with Oracle Database 12c and how to invoke these through RESTful Web Services.

https://blogs.oracle.com/java/entry/nashorn_and_stored_procedures

JavaScript Stored Procedures and Node.js Applications with Oracle Database 12c

Mon, 2015-02-09 20:44
                                      Kuassi Mensah
                                    db360.blogspot.com | @kmensah | https://www.linkedin.com/in/kmensah

Introduction                                                            
Node.js and server-side JavaScript are hot and trendy; per the latest “RedMonk Programming Languages Rankings[1], JavaScript and Java are the top two programming languages. For most developers building modern Web, mobile, and cloud based applications, the ability to use the same language across all tiers (client, middle, and database) feels like Nirvana but the IT landscape is not a green field; enterprises have invested a lot in Java (or other platforms for that matter) therefore, the integration of JavaScript with it becomes imperative. WebSockets and RESTful services enable loose integration however, the advent of JavaScript engines on the JVM (Rhino, Nashorn, DynJS), and Node.js APIs on the JVM (Avatar.js, Nodyn, Trireme), make possible and very tempting to co-locate Java and Node applications on the same JVM.
This paper describes the steps for running JavaScript stored procedures[2]directly on the embedded JVM in Oracle database 12c and the steps for running Node.js applications on the JVM against Orace database 12c, using Avatar.js, JDBC and UCP.
          
JavaScript and the Evolution of Web Applications Architecture                                   
At the beginning, once upon a time, long time ago, JavaScript was a browser-only thing while business logic, back-end services and even presentations where handled/produced in middle-tiers using Java or other platforms and frameworks. Then JavaScript engines (Google’s V8, Rhino) leave the browsers and gave birth to server-side JavaScript frameworks and Node.js.
Node Programming Model
Node.js and similar frameworks bring ease of development rapid prototyping, event-driven, and non-blocking programming model[3]to JavaScript. This model is praised for its scalability and good enough performance however, unlike Java, Node lacks standardization in many areas such as database access i.e., JDBC equivalent, and may lead, without discipline, to the so called “callback hell[4]”.
Nonetheless, Node is popular and has a vibrant community and a large set of frameworks[5].
Node Impact on Web Applications Architecture
With the advent of Node, REST and Web Sockets, the architecture of Web applications has evolved into 
(i) plain JavaScript on browsers (mobiles, tablets, and desktops); 
(ii) server-side JavaScript modules (i.e., Node.js, ORM frameworks) interacting with Java business logic and databases.
The new proposal for Web applications architecture is the integration of Node.js and Java on the JVM.  Let’s discuss the enabling technologies: JavaScript engine on the JVM and Node API on the JVM and describe typical use cases with Oracle database 12c.  
JavaScript on the JVM
Why implement a JavaScript engine and run JavaScript on the JVM? For starters, i highly recommend Mark Swartz ‘s http://moduscreate.com/javascript-and-the-jvm/and Steve Yegge’s  http://steve-yegge.blogspot.com/2008/06/rhinos-and-tigers.htmlblog posts. 
In summary, the JVM brings (i) portability; (ii) manageability; (iii) Java tools; (iv) Java libraries/technologies such as JDBC, Hadoop; and (v) the preservation of investments in Java. 
There are several implementations/projects of Java based JavaScript engines including Rhino, DynJS and Nashorn.Rhino
First JavaScript engine entirely written in Java; started at NetScape in 1997 then, became an open-source Mozilla project[6]. Was for quite some time the default JavaScript engine in Java SE, now  replaced by Nashorn in Java SE 8. 
DynJS
DynJS is another open-source JavaScript engine for the JVM. Here is the project homepage http://dynjs.org/. 
Nashorn
Introduced in Java 7 but “production” in Java 8[7], the goal of project Nashorn (JEP 174), is to enhance the performance and security of the Rhino JavaScript engine on the JVM. It integrates with javax.script API (JSR 223) and allows seamless interaction between Java and JavaScript (i.e., invoking Nashorn from Java and invoking Java from Nashorn).

To illustrate the reach of Nashorn on the JVM and the interaction between Java and JavaScript, let’s run some JavaScript directly on the database-embedded JVM in Oracle database 12c. 
JavaScript Stored Procedures with Oracle database 12c Using Nashorn
Why would anyone run JavaScript in the database? For the same reasons you’d run Java in Oracle database. Then you might ask: why run Java in the database, in the first place? As discussed in my book[8], the primary motivations are: 
(i) reuse skills and code, i.e., which programming languages are your new hire knowledgeable of or willing to learn; 
(ii) avoid data shipping[9] i.e., in-place processing of billions of data/documents; 
(iii) combine SQL with foreign libraries to achieve new database capability thereby extending SQL and the reach of the RDBMS, e.g., Web Services callout, in-database container for Hadoop[10]
Some developers/architects prefer a tight separation between the RDBMS and applications therefore, no programming language in the database[11]but there are many pragmatic developers/architects who run code near data, whenever it is more efficient than shipping data to external infrastructure.

Co-locating functions with data on the same compute engine is shared by many programming models such as Hadoop. With the surge and prevalence of Cloud computing, RESTful service based architecture is the new norm. Data-bound services can be secured and protected by the REST infrastructure, running outside the RDBMS. Typical use case: a JavaScript stored procedures service would process millions/billions of JSON documents in the Oracle database and would return the result sets to the service invoker.

To conclude, running Java, JRuby, Python, JavaScript, Scala, or other programming language on the JVM in the database is a sound architectural choice. The best practices consist in: (i) partitioning applications into data-bound and compute-bound modules or services; (ii) data-bound services are good candidates for running in the database; (iii) understand Oracle database 
DEFINER INVOKER rights [12]and grant only the necessary privilege(s) and/or permission(s). 

The Steps
The following steps allow implementing JavaScipt stored procedure  running in Oracle database; these steps represent an enhancement from the ones presented at JavaOne and OOW 2014 -- which consisted in reading the JavaScript from the file system; such approach required granting extra privileges to the database schema for reading from RDBMS file system something not recommended from security perspective. Here is a safer approach:

1.      Nashorn is part of Java 8 but early editions can be built for Java 7; the embedded JavaVM in Oracle database 12c supports Java 6 (the default) or Java 7. For this proof of concept, install Oracle database 12c with Java SE 7 [13]
2.      Build a standard Nashorn.jar[14]; (ii) modify the Shell code to interpret the given script name as an OJVM resource; this consists mainly in invoking getResourceAsStream()on the current thread's context class loader ; (iii) rebuild Nashorn.jar with the modified Shell
3.  Load the modified Nashorn jar into an Oracle database shema e.g., HR
 loadjava -v -r -u hr/ nashorn.jar
4.      Create a new dbms_javascript  package for invoking Nashorn’s Shell with a script name as parameter
create or replace package dbms_javascript as
  procedure run(script varchar2);
end;
/
create or replace package body dbms_javascript as
  procedure run(script varchar2) as
  language java name 'com.oracle.nashorn.tools.Shell.main(java.lang.String[])';
end;
/

Then call dbms_javascript,run(‘myscript.js’)from SQL which will invoke Nashorn  Shell to execute the previously loaded myscript.js.
5.  Create a custom role, we will name it NASHORN, as follows, connected as SYSTEM
SQL> create role nashorn;
SQL> call dbms_java.grant_permission('NASHORN', 'SYS:java.lang.RuntimePermission', 'createClassLoader', '' );
SQL> call dbms_java.grant_permission('NASHORN', 'SYS:java.lang.RuntimePermission', 'getClassLoader', '' );
SQL> call dbms_java.grant_permission('NASHORN', 'SYS:java.util.logging.LoggingPermission', 'control', '' );
Best practice: insert those statements in a nash-role.sqlfile and run the script as SYSTEM
6.      Grant the NASHORN role created above to the HR schema as follows (connected as SYSTEM):

SQL> grant NASHORN to HR;

7.      Insert the following JavaScript code in a file e.g., database.js stored on your client machine’s (i.e., a machine from which you will invoke loadjava as explained in the next step).
This script illustrates using JavaScript and Java as it
uses the server-side JDBC driver to execute a PreparedStatement to retrieve the first and last names from the EMPLOYEES table.

var Driver = Packages.oracle.jdbc.OracleDriver;
var oracleDriver = new Driver();
var url = "jdbc:default:connection:";   // server-side JDBC driver
var query ="SELECT first_name, last_name from employees";
// Establish a JDBC connection
var connection = oracleDriver.defaultConnection();
// Prepare statement
var preparedStatement = connection.prepareStatement(query);
// execute Query
var resultSet = preparedStatement.executeQuery();
// display results
     while(resultSet.next()) {
     print(resultSet.getString(1) + "== " + resultSet.getString(2) + " " );
     }
// cleanup
resultSet.close();
preparedStatement.close();
connection.close();


8.      Load database.js in the database as a Java resource (not a vanilla class)
loadjava –v –r –u hr/ database.js

9.      To run the loaded script

sqlplus hr/
SQL>set serveroutput on
SQL>call dbms_java.set_output(80000)
SQL>call dbms_javascript.run(‘database.js’);

The Nashorn Shell reads ‘database.js’ script stored as Java Resource from internal table; the JavaScript in its turn invokes JDBC to execute a PreparedStatement and the result set is displayed on the console. The message “ORA=29515: exit called from Java code with status 0” is due to the invocation of java.lang.Runtime.exitInternal; and status 0 means normal exit (i.e., no error). The fix is to remove that call from Nashorn. 
Node.js on the JVM
As discussed earlier, Node.js is becoming the man-in-the-middle between Web applications front ends and back-end legacy components and since companies have invested a lot in Java, it is highly desirable to co-locate Node.js and Java components on the same JVM for better integration thereby eliminating the communication overhead. There are several projects re-implementing Node.js APIs on the JVM including: Avatar.js, Nodyn, and Trireme. This paper will only discuss Oracle’s Avatar.js.
Project Avatar.js[15]
The goal of project Avatar.js is to furnish “Node.js on the JVM”; in other words, an implementation of Node.js APIs, which runs on top of Nashorn and enables the co-location of Node.js programs and Java components. It has been outsourced by Oracle under GPL license[16]. Many Node frameworks and/or applications have been certified to run unchanged or slightly patched, on Avatar.js.

There are binary distributions for Oracle Enterprise Linux, Windows and MacOS (64-bits). These builds can be downloaded from https://maven.java.net/index.html#welcome. Search for avatar-js.jar and platform specific libavatar-js libraries (.dll, .so, dylib). Get the latest and rename the jar and the specific native libary accordingly. For example: on  Linux, rename the libary to avatar-js.so; on Windows, rename the dll to avatar-js.dll and add its location to your PATH (or use -Djava.library.path=).

RDBMSes in general and Oracle database in particular remain the most popular persistence engines and there are RDBMS specific Node drivers[17]as well as ORMs frameworks. However, as we will demonstrate in the following section, with Avatar.js, we can simply reuse existing Java APIs including JDBC and UCP for database access.

Node Programming with Oracle Database using Avatar.js, JDBC and UCP 
The goal of this proof of concept is to illustrate the co-location of a Node.js application, the Avatar.js library, the Oracle JDBC driver and the Oracle Universal Connection Pool (UCP) on the same Java 8 VM.
The sample application consists in a Node.js application which performs the following actions:
(i) Request a JDBC-Thin connection from the Java pool (UCP)
(ii)Create a PreparedStatement object for “SELECT FIRST_NAME, LAST_NAME FROM EMPLOYEES
(iii)Execute the statement and return the ResultSet in a callback
(iv)Retrieve the rows and display in browser on port 4000
(v) Perform all steps above in a non-blocking fashion – this is Node.js’s raison d’être. The demo also uses Apache ab load generator to simulate concurrent users running the same application in the same/single JVM instance.For the Node application to scale in the absence of asynchronous JDBC APIs, we need to turn synchronous calls into non-blocking ones and retrieve the result set via callback.
Turning Synchronous JDBC Calls into Non-Blocking Calls
We will use the following wrapper functions to turn any JDBC call into a non-blocking call i.e., put the JDBC call into a thread pool and free up the Node event loop thread.
var makeExecutecallback = function(userCallback) {
 return function(name, args){
      ...
      userCallback(undefined, args[1]);
  }
}
 function submit(task, callback, msg) {
    var handle = evtloop.acquire();
    try {    var ret = task();
               evtloop.post(new EventType(msg, callback, null, ret)); {catch{}
    evtloop.submit(r);
}

Let’s apply these wrapper functions to executeQuery JDBC call, to illustrate the concept
exports.connect = function(userCallback) {..} // JDBC and UCP settings
Statement.prototype.executeQuery = function(query, userCallback) {
         var statement = this._statement;
          var task = function() {
          return statement.executeQuery(query);
       }
     submit(task, makeExecutecallback(userCallback), "jdbc.executeQuery");
}
Similarly the same technique will be applied to other JDBC statement APIs.
Connection.prototype.getConnection = function() {…}
Connection.prototype.createStatement = function() {..}
Connection.prototype.prepareCall = function(storedprocedure) {..}
Statement.prototype.executeUpdate = function(query, userCallback) {..}
Returning Query ResultSet through a Callback
The application code fragment hereafter shows how: for every HTTP request: (i) a connection is requested, (ii) the PreparedStatement is executed, and (iii) the result set printed on port 4000.
   ...
   var ConnProvider = require('./connprovider').ConnProvider;
var connProvider = new ConnProvider(function(err, connection){.. });

var server = http.createServer(function(request, response) {
  connProvider.getConn(function(name,data){..});     
  connProvider.prepStat(function(resultset) {
                while (resultset.next()) {
                   response.write(resultset.getString(1) + " --" + resultset.getString(2));
                   response.write('
');
    }
    response.write('
');
    response.end();   
}
server.listen(4000, '127.0.0.1');

Using Apache AB, we were able to scale to hundreds of simultaneous invocations of the Node application. Each instance grabs a Java connection from The Universal Connection Pool (UCP), executes the SQL statements through JDBC then return the result set via a Callbak on port 4000.
Conclusions
As server-side JavaScript (typified by Node.js) gains in popularity it’ll have to integrate with existing components (COBOL is still alive!!). Developers, architects will have to look into co-locating JavaScript with Java, across middle and database tiers.





[1] http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
[2] I’ll discuss the rationale for running programming languages in the database, later in this paper.
[3] Request for I/O and resource intensive components run in separate process then invoke a Callback in the main/single Node  thread, when done.
[4] http://callbackhell.com/
[5] Search the web for “Node.js frameworks
[6] https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
[7] Performance being one of the most important aspect
[8] http://www.amazon.com/exec/obidos/ASIN/1555583296
[9] Rule of thumb: when processing more than ~20-25% of target data, do it in-place, where data resides (i.e., function shipping).
[10] In-database Container for Hadoop is not available, as of this writing.
[11] Other than database’s specific procedural language, e.g.,  Oracle’s PL/SQL
[12] I discuss this in chapter 2 of my book; see also Oracle database docs.
[13] See Multiple JDK Support in http://docs.oracle.com/database/121/JJDEV/E50793-03.pdf
[14] Oracle does not furnish a public download of Nashorn.jar for Java 7; search “Nashorn.jar for Java 7”.
[15]  https://avatar-js.java.net/
[16] https://avatar-js.java.net/license.html
[17] The upcoming Oracle Node.js driver was presented at OOW 2014. 

My DOAG session re:Server-side JavaScript

Tue, 2014-11-18 04:31
#DOAG Wed 19/11 17:00 rm HongKong Server-side #JavaScript (#NodeJS) progrm#OracleDB using #nashorn & Avatar.js --#db12c @OracleDBDev #java

Will post shortly ablog re: JavaScript Stored Procedures. 

Run Scala directly in Oracle database

Thu, 2014-02-27 06:15
A nice proof of concept for #Scala, #java, #Oracle, and #db12c, afficionados http://bit.ly/1o8gejG

En route for OTN Yathra

Mon, 2014-02-17 11:27
En route for OTN Yathra (http://t.co/E0KUudWOLn) first stop Mumbai customers visits #java #db12c #mapreduce #hadoop #oracletechnet

Pages