
������ ���	�
�� ��

������

����	�� ���

Forms� Advanced
Techniques
Release 4.5
Part No. A32506–2

Forms Advanced Techniques, Release 4.5

Part No. A32506–2
Copyright Oracle Corporation 1994
All rights reserved. Printed in the U.S.A.
Contributing Authors: Ken Chu, Gina Lim
Contributors: Mark Clark, David Navas, Eric Newman, David Walker

This software was not developed for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It is the
customer’s responsibility to take all appropriate measures to ensure the safe
use of such applications if the programs are used for such purposes.

This software/documentation contains proprietary information of Oracle
Corporation; it is provided under a license agreement containing restrictions on
use and disclosure and is also protected by copyright law. Reverse engineering
of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of
the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of DFARS
252.227–7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not
within the Department of Defense, then it is delivered with “Restricted Rights”,
as defined in FAR 52.227–14, Rights in Data – General, including Alternate III
(June 1987).

The information in this document is subject to change without notice. If you
find any problems in the documentation, please report them to us in writing.
Oracle Corporation does not warrant that this document is error–free.

ORACLE, SQL*Net, and SQL*Plus are registered trademarks of Oracle
Corporation.
Oracle Forms, Oracle Reports, Oracle Graphics, Oracle Book, Oracle*Terminal,
PL/SQL, and ORACLE7 are trademarks of Oracle Corporation.
Microsoft, MS–DOS, MS, Excel, Word, Visual Basic, and Windows are
trademarks of Microsoft Corporation.
All other products or company names are used for identification purposes only,
and may be trademarks of their respective owners.

T

 iPreface

Preface

Preface

he Forms Advanced Techniques Manual provides information
necessary to help you use Forms 4.5. This preface includes the
following topics:

• Forms Documentation Set

• Audience

• Related Publications

• Your Comments Are Welcome

 ii Forms Advanced Techniques

Forms Documentation Set

The documentation set for Forms Version 4.5 consists of the following
documents:

Document Part Number

Forms Documentation Set, Version 4.5 A32503

Getting Started with Forms, Version 4.5 A32504

Forms Developer’s Guide, Version 4.5 A32505

Forms Advanced Techniques, Version 4.5 A32506

Forms Reference Manual, Version 4.5,
Vol. 1 and Vol. 2

A32507

Forms Messages and Codes, Version 4.5 A32508

Audience

All the manuals in the Forms Version 4.5 documentation set are written
for the application developer.

Related Publications

As an application designer using Version 4.5 of Forms, you should also
be familiar with the following documents:

Document Part Number

Procedure Builder Developer’s Guide A32485

Oracle Terminal User’s Guide, Version 2.0 A11700

Oracle7 Server Messages and Codes Manual A12379

Oracle7 Server SQL Language Reference Manual,
Version 7.0

778–70–1292

PL/SQL User’s Guide and Reference, Version 2.0 800–20–1292

Forms documentation for your operating system

 iiiPreface

Your Comments Are Welcome

We value and appreciate your comments as an Oracle user and reader
of the manuals. As we write, revise, and evaluate our documentation,
your opinions are the most important input we receive. At the back of
our printed manuals is a Reader’s Comment Form, which we
encourage you to use to tell us what you like and dislike about this
manual or other Oracle manuals. If the form is not available, please use
the following address or FAX number.

Forms Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.
FAX: 415–506–7200

 iv Forms Advanced Techniques

 vContents

Contents

Chapter 1 Handling Runtime Errors 1 – 1.
Handling Runtime Errors in Triggers 1 – 2.

Using PL/SQL Exception Handling in Triggers 1 – 2.
Results of Trigger Failure 1 – 3.
Handling Exceptions Raised in Triggers 1 – 4.
Responding to Errors 1 – 5.

Evaluating the Success or Failure of Built–ins 1 – 5.
Handling Errors in Built–in Subprograms 1 – 6.
Raising the FORM_TRIGGER_FAILURE Exception 1 – 6.
Handling Errors in User–Named Triggers 1 – 7.

Error Handling for Stored Procedures 1 – 8.
Checking DBMS_ERROR_TEXT, DBMS_ERROR_CODE 1 – 8. . .
User–Defined Exceptions 1 – 8.
Trapping SQLCODE and SQLERRM 1 – 10.

Chapter 2 Stored Procedures and Database Triggers 2 – 1.
About Stored Procedures 2 – 2.

Restrictions When Using Stored Procedures 2 – 3.
Standard Packages with Oracle7 Server 2 – 3.

Creating and Modifying Stored Procedures 2 – 5.
Stored Program Unit Editor 2 – 6.

Calling Stored Procedures 2 – 9.
About Database Triggers 2 – 14.
Creating and Editing Database Triggers 2 – 17.

Database Trigger Editor 2 – 18.
Declarative Database Constraints 2 – 20.

 vi Forms Advanced Techniques

Entity Constraints 2 – 20.
Referential Constraints 2 – 20.
Strategies for Constraint Checking 2 – 20.
Master/Detail Blocks and Referential Integrity 2 – 22.

Chapter 3 User Exit Interface to Foreign Functions 3 – 1.
About the User Exit Interface 3 – 2.
About Foreign Functions 3 – 3.

Types of Foreign Functions 3 – 3.
Oracle Precompiler Statements 3 – 5.

EXEC SQL Statement 3 – 6.
EXEC TOOLS GET Statement 3 – 7.
EXEC TOOLS SET Statement 3 – 8.
EXEC TOOLS MESSAGE Statement 3 – 9.
EXEC TOOLS GET CONTEXT Statement 3 – 10.
EXEC TOOLS SET CONTEXT Statement 3 – 11.
EXEC ORACLE Statement 3 – 11.

Creating a User Exit Interface to Foreign Functions 3 – 12.
Creating an IAPXTB Control Structure 3 – 12.
Integrating a User Exit Interface with Oracle Forms 3 – 13.

Invoking a Foreign Function from a User Exit Interface 3 – 14.
Passing Parameter Values to a Foreign Function 3 – 15.
Returning a Value from a Foreign Function 3 – 16.

A User Exit Interface to Foreign Functions on MS Windows 3 – 16. . .
Microsoft Windows User Exit Interface Files 3 – 17.
Compiling Microsoft Windows Foreign Functions 3 – 19.
Creating the IAPXTB Control Structure for MS Windows 3 – 19. .
Building a Microsoft Windows Dynamic Link Library 3 – 20.
Defining Foreign Functions in Multiple DLLs 3 – 21.
An Example of a User Exit Interface in Microsoft Windows 3 – 23

Accessing the MS Windows SDK From a User Exit Interface 3 – 25. . .

Chapter 4 Connecting to Non–ORACLE Data Sources 4 – 1.
About Connecting to Non–ORACLE Data Sources 4 – 2.
Connecting with Open Gateway 4 – 2.

Key Mode Block Property 4 – 3.
Locking Mode Block Property 4 – 5.
Cursor Mode Form Property 4 – 6.
Savepoint Mode Form Property 4 – 7.

Using Transactional Triggers 4 – 8.
Transactional Trigger Set 4 – 8.

 viiContents

Replacing Default Processing 4 – 10.
Calling User Exits 4 – 11.
Augmenting and Suppressing Default Processing 4 – 11.
Transactional Triggers Block Property 4 – 15.
Which Transactional Triggers are Required 4 – 16.

About Transaction Processing 4 – 16.
Logon and Logout Processing 4 – 18.
Count Query Processing 4 – 20.
Query and Fetch Processing 4 – 22.
Commit Processing 4 – 29.
Savepoint and Rollback Processing 4 – 33.
Check Column Security Processing 4 – 34.
Generate Sequence Number Processing 4 – 35.
Lock Record Processing 4 – 36.
Accessing System Date 4 – 36.

Chapter 5 Multiple–Form Applications 5 – 1.
About Multiple–Form Applications 5 – 2.

Invoking Forms 5 – 2.
Multiple–Form Applications and the Root Window 5 – 3.

Invoking Independent Forms with OPEN_FORM 5 – 4.
Navigation Between Independent Forms 5 – 4.
Opening Forms in Different Database Sessions 5 – 6.
Opening Multiple Instances of the Same Form 5 – 7.

Replacing the Current Form with NEW_FORM 5 – 9.
Calling Modal Forms with CALL_FORM 5 – 10.

Exiting from a Called Form 5 – 11.
Allowing Operators to Quit from a Called Form 5 – 11.
Calling a Form in Query–Only Mode 5 – 12.
Using CALL_FORM with OPEN_FORM 5 – 13.

Managing Commit Processing When Using CALL_FORM 5 – 15.
Post vs. Commit 5 – 15.
What is Post–Only Mode? 5 – 15.
Savepoints and Rollbacks 5 – 16.
Rolling Back Changes 5 – 17.
Rollback Mode Parameters 5 – 17.
Default Rollback Mode 5 – 18.
Modifying the CLEAR ALL and EXIT Commands 5 – 19.
Using Posting and Rollback Mode to Manage Transactions 5 – 19.
Checking for Changed Records 5 – 20.
Getting Information About the Call Form Stack 5 – 22.
Suppressing Post and Commit Transaction Messages 5 – 22.

 viii Forms Advanced Techniques

Passing Parameters to Forms 5 – 23.
Passing a Parameter List 5 – 24.
The Default Parameter List 5 – 24.
Parameter Validation 5 – 25.
Initial Values of Parameters in a Called Form 5 – 26.

Integrating Form and Menu Modules 5 – 26.
OPEN_FORM Menu Functionality 5 – 26.
NEW_FORM Menu Functionality 5 – 27.
CALL_FORM Menu Functionality 5 – 27.
Creating a Master Menu 5 – 27.
Using the REPLACE_MENU Built–in Procedure 5 – 28.

Chapter 6 Responding to Mouse Events 6 – 1.
About Mouse Events, Triggers, and System Variables 6 – 2.

Mouse Event Triggers 6 – 2.
Mouse Event System Variables 6 – 3.

Performing Actions Based on the Mouse Button Pressed 6 – 4.
Performing Actions Based on Mouse Location 6 – 5.

Chapter 7 Using Timers 7 – 1.
Creating Timers 7 – 2.

Timer Usage Rules 7 – 3.
Responding to Multiple Timers 7 – 4.

Modifying Timers Programmatically 7 – 5.
Deleting a Timer 7 – 6.

Chapter 8 Integrating with Other Oracle Tools 8 – 1.
About Integration with Other Oracle Tools 8 – 2.
Calling Other Products from Oracle Forms 8 – 3.

Suppressing the Logon in Oracle Graphics 8 – 4.
Invoking Oracle Book from Oracle Forms 8 – 5.

Passing Parameters to Called Products 8 – 5.
Creating Parameter Lists 8 – 6.

Using Chart Items to Embed Oracle Graphics Displays 8 – 8.
Creating a Chart Item 8 – 9.
Passing Parameters and Data to Oracle Graphics 8 – 10.
Creating a Chart Item that Responds to Mouse Events 8 – 13.

The OG Package 8 – 15.
OG.CLOSE 8 – 15.
OG.GETCHARPARAM 8 – 15.

 ixContents

OG.GETNUMPARAM 8 – 16.
OG.INTERPRET 8 – 16.
OG.MOUSEDOWN 8 – 17.
OG.MOUSEUP 8 – 18.
OG.OPEN 8 – 20.
OG.REFRESH 8 – 21.

Calling Oracle Forms from 3GL Programs 8 – 22.

Chapter 9 Designing for Portability 9 – 1.
About Portability 9 – 2.
Planning 9 – 3.
The Porting Process 9 – 4.
Setting Standards 9 – 5.

Template Forms 9 – 5.
Choosing a Form Coordinate System 9 – 6.
Using Colors 9 – 7.
Choosing Fonts 9 – 8.

Font Aliasing 9 – 9.
Using Icons 9 – 10.
Setting Window Size 9 – 10.
Form Functionality 9 – 11.

Recommendations 9 – 11.
Character–Mode Considerations 9 – 12.

Running in Character Mode 9 – 12.
Text Issues in Character Mode 9 – 12.
Aligning Boilerplate Text in Character Mode 9 – 13.
Properties Restricted to Character Mode Applications 9 – 14.

Chapter 10 Object Linking and Embedding (OLE) 10 – 1.
About OLE 10 – 2.
About OLE Objects 10 – 3.

Embedded Objects 10 – 3.
Linked Objects 10 – 3.

About OLE Servers and OLE Containers 10 – 4.
About the Registration Database 10 – 4.
About OLE Object Activation Styles 10 – 5.

In–place Activation 10 – 5.
External Activation 10 – 6.

About OLE Automation 10 – 7.
When to Embed or Link OLE Objects 10 – 7.
OLE in Oracle Forms 10 – 8.

 x Forms Advanced Techniques

Using OLE in the Oracle Forms Designer 10 – 9.
Using OLE in Oracle Forms at Runtime 10 – 11.
Creating an OLE Container in Oracle Forms 10 – 12.
Linking and Embedding OLE Objects 10 – 13.

Embedding Objects 10 – 13.
Linking Objects 10 – 14.

Displaying OLE Objects 10 – 15.
Editing OLE Objects 10 – 17.

Editing Embedded Objects 10 – 17.
Editing Linked Objects 10 – 17.

Converting OLE Objects 10 – 20.
Converting Embedded Objects 10 – 20.
Converting Linked Objects 10 – 21.

Chapter 11 VBX Controls 11 – 1.
About VBX Controls 11 – 2.
VBX Controls in Oracle Forms 11 – 3.

VBX Control as an Oracle Forms Item 11 – 3.
The Value of a VBX Control 11 – 4.

VBX Controls in the Oracle Forms Designer 11 – 5.
Oracle Forms VBX Control Properties 11 – 5.
VBX Control Properties 11 – 5.

VBX Controls in Oracle Forms at Runtime 11 – 6.
Responding to VBX Control Events 11 – 7.
Firing VBX Control Events 11 – 8.
Getting VBX Control Properties 11 – 9.
Setting VBX Control Properties 11 – 10.
Invoking VBX Methods 11 – 11.

Creating a VBX Control in Oracle Forms 11 – 12.

Chapter 12 Dynamic Data Exchange (DDE) 12 – 1.
About DDE 12 – 2.
Limitations 12 – 2.
Function Overview 12 – 3.

Support Functions 12 – 3.
Connect/Disconnect Functions 12 – 3.
Transaction Functions 12 – 3.
Data Type Translation Functions 12 – 4.

DDE.APP_BEGIN 12 – 4.
DDE.APP_END 12 – 6.
DDE.APP_FOCUS 12 – 7.

 xiContents

DDE.EXECUTE 12 – 8.
DDE.GETFORMATNUM 12 – 9.
DDE.GETFORMATSTR 12 – 10.
DDE.INITIATE 12 – 11.
DDE.POKE 12 – 12.
DDE.REQUEST 12 – 13.
DDE.TERMINATE 12 – 14.
Microsoft Windows Predefined Data Formats 12 – 15.
Exceptions 12 – 16.

Chapter 13 PL/SQL Interface to Foreign Functions 13 – 1.
About the PL/SQL Interface 13 – 2.
About Foreign Functions 13 – 3.

Types of Foreign Functions 13 – 3.
Precompiler Statements 13 – 5.

Creating a PL/SQL Interface to Foreign Functions 13 – 6.
Initializing a Foreign Function 13 – 6.
Associating a PL/SQL Subprogram 13 – 7.
Mimicking a Foreign Function Prototype with PL/SQL 13 – 8. . . .

Invoking a Foreign Function from a PL/SQL Interface 13 – 9.
Passing Parameter Values to a Foreign Function 13 – 10.
Returning a Value from a Foreign Function 13 – 10.
Simplifying Complex Parameter Data Types 13 – 11.

An Example of Creating a PL/SQL Interface 13 – 11.
Accessing the MS Windows SDK from a PL/SQL Interface 13 – 16. . . .

Chapter 14 Oracle Open Client Adapter for ODBC 14 – 1.
About OCA and ODBC 14 – 2.

Oracle Open Client Adapter Architecture 14 – 3.
Oracle Open Client Adapter Communications 14 – 4.

Using Oracle Open Client Adapter with Oracle Forms 14 – 5.
Establishing an ODBC Connection 14 – 5.
Executing SQL Statements 14 – 6.
Terminating Transactions and Connections 14 – 7.

Setting Up Applications to Run with OCA 14 – 8.
OCA Support by Datasource 14 – 10.
Oracle Open Client Adapter Restrictions 14 – 12.

Generic Restrictions 14 – 12.
Driver–Specific Restrictions 14 – 15.
SQL Server Restrictions 14 – 15.
Microsoft Access Restrictions 14 – 18.

 xii Forms Advanced Techniques

Rdb Restrictions 14 – 19.
Using UBT 14 – 20.

SQL Command Syntax 14 – 20.
UBT Command Syntax 14 – 20.

UBT Commands 14 – 21.
CONNECT 14 – 21.
COPY 14 – 21.
@ 14 – 23.
DISCONNECT 14 – 23.
QUIT/EXIT 14 – 23.
SET AUTOCOMMIT 14 – 23.
SPOOL 14 – 24.

Appendix A Using Oracle Terminal A – 1.
About Oracle Forms Resource Files A – 2.
Using Oracle Terminal to Remap Oracle Forms Key Mappings A – 2.

Using OT to Define Key Bindings for Key Triggers A – 6.
Oracle Forms Runtime Key Bindings A – 8.
Using Oracle Terminal to Modify Logical Attributes A – 13.

About Attribute Precedence A – 13.
Modifying Oracle Forms Logical Attributes A – 16.
Edit Attribute Node Options A – 18.

Font Attributes A – 18.
Color and Fill Pattern Attributes A – 18.

Logical Attribute Descriptions A – 20.
Cm_Logicals A – 20.
Forms_Logicals A – 21.

Appendix B National Language Support B – 1.
About National Language Support B – 2.

NLS Architecture B – 3.
Error Messages and Boilerplate Text B – 3.

Character Encoding Schemes B – 4.
About the NLS Language Environment Variables B – 5.
Additional NLS Environment Variables B – 7.
Oracle Forms NLS Parameters B – 8.
Character Set Design Considerations B – 9.

Language and Territory Default Format Masks B – 10.
Format Mask Design Considerations B – 10.
Format Mask Characters B – 12.
Screen Design Considerations B – 13.

 xiiiContents

Oracle Forms Interface Translation B – 14.
Message Files B – 14.

Using the Oracle Translation Manager Approach B – 15.
Using the Runtime Language Switching Approach B – 16.
Using PL/SQL Libraries for Strings in Code B – 17.
Using Bidirectional Support B – 18.

Appendix C PECS: Performance Event Collection Services C – 1.
About PECS C – 2.

The PECS System C – 2.
PECS Measurements C – 3.

Collecting Performance Data on Oracle Forms Events C – 4.
Collecting Performance Data on Application–Specific Events C – 5. .

Group Application–Specific Events C – 5.
Define PECS Events C – 6.
Run Application with PECS C – 7.
Load the Form and the PECS Data into the Database C – 7.
Analyze the Data C – 7.
Next Steps C – 8.

Collecting Object Coverage Data C – 10.
Collecting Line Coverage Data C – 10.
Using the PECS Assistant C – 11.

About the PECS Hierarchy C – 11.
Steps for Using the PECS Assistant C – 12.
PECS Reports C – 13.
PECS Maintenance C – 13.
Using .DAT Files C – 14.
Using PECSLOAD C – 14.
Location of the PECS Data File C – 15.
PECS Database Tables C – 15.

PECS Built–ins C – 16.
PECS.ADD_CLASS C – 17.
PECS.ADD_EVENT C – 18.
PECS.COLLECTOR C – 19.
PECS.DISABLE_CLASS C – 20.
PECS.ENABLE_CLASS C – 21.
PECS.END_EVENT C – 22.
PECS.POINT_EVENT C – 23.
PECS.START_EVENT C – 24.

 xiv Forms Advanced Techniques

C H A P T E R

1
T

1 – 1Handling Runtime Errors

Handling Runtime
Errors

his chapter describes error–handling techniques for code that you
write in form, menu, and library modules. It includes the following
topics:

• Handling Runtime Errors in Triggers 1 – 2

• Evaluating the Success or Failure of Built–ins 1 – 5

• Error Handling for Stored Procedures 1 – 8

1 – 2 Forms Advanced Techniques

Handling Runtime Errors in Triggers

When you compile a trigger at design time or generate a form module,
the compiler detects any errors that would prevent the trigger from
executing successfully at runtime. Other errors, however, manifest only
at runtime, and are often impossible to avoid.

When a runtime error occurs, you need to detect and respond to the
error in your trigger code so it does not interrupt the flow of the
application. Triggers should be written to handle runtime errors
gracefully, rather than allowing them to disrupt the work of the form
operator.

Oracle Forms default functionality helps you handle runtime errors by
detecting errors as they occur, issuing error messages, setting the values
of error variables, and, when appropriate, rolling back transactions that
cannot be completed successfully. You can supplement default error
handling by writing triggers that respond to errors in an
application–specific manner.

Note: This section assumes you are familiar with PL/SQL error
handling techniques. Refer to the PL/SQL User’s Guide and Reference for
more information.

Using PL/SQL Exception Handling in Triggers

Errors in PL/SQL code are called exceptions. When an error occurs, an
exception is raised. To handle raised exceptions, you can write exception
handlers. In Oracle Forms, you can use exception handlers to handle
runtime errors that occur in the following types of statements:

• SQL statements

• PL/SQL statements

• calls to user–named subprograms

When one of these statements in a trigger or PL/SQL block raises an
exception, normal processing stops and control transfers to the trigger’s
exception handling section.

1 – 3Handling Runtime Errors

How Exceptions Propagate in Triggers PL/SQL blocks can be nested as
in–line blocks in Oracle Forms triggers. For example, a trigger might
include a block that encloses another block.

Begin (nested block)

. . .

End;

Trigger code (anonymous block)

. . .

. . .

Begin

. . .

End;

Nested PL/SQL Blocks
within a Trigger

When the inner block raises an exception for which there is no exception
handler, that block terminates and the exception propagates, or ”falls
out,” to the enclosing block. If a handler is not found in the enclosing
block, the exception propagates again, finally reaching the outermost
block of the trigger. If the outer block does not handle the exception, the
trigger fails, and Oracle Forms returns a runtime error.

Exceptions Raised in User–Named Subprograms For purposes of
exception handling, calls to user–named subprograms are treated as
in–line PL/SQL blocks within a trigger. That is, an unhandled exception
raised in a user–named subprogram propagates to the block in which
the subprogram was called.

Results of Trigger Failure

Once a trigger fires, it can end with either success or failure. A trigger
fails when it raises an unhandled exception. When this occurs, Oracle
Forms aborts the trigger and performs the appropriate post–failure
processing. The specific processing that Oracle Forms performs
depends on the type of trigger that failed.

1 – 4 Forms Advanced Techniques

The following table shows the post–failure processing for three types of
triggers:

Trigger Type Result of Trigger Failure

Key – * (any key trigger) Trigger failure is ignored.

Pre–Item Oracle Forms attempts to return input focus to
the source item.

On–Insert Oracle Forms rolls back all database changes
posted by the current commit process and at-
tempts to navigate to the first item in the current
record of the block in error.

When–Validate–Item Item validation fails. Oracle Forms sets the error
location. When possible, input focus is returned
to the source item.

When a trigger fails, Oracle Forms tries to undo any conditions that
would cause a runtime error as a result of the trigger’s failure.

For example, the Pre–Item trigger fires when Oracle Forms attempts to
move the input focus from a source item to a target item. When a
Pre–Item trigger fails, navigation cannot be completed successfully, so
Oracle Forms returns the input focus to the source item.

Similarly, when a commit processing trigger such as On–Insert fails,
Oracle Forms performs the appropriate rollback to ensure data integrity.

In the trigger descriptions in the online Help and in Chapter 2 of the
Oracle Forms Reference Manual, each trigger has an “On Failure:” entry
that describes its failure behavior.

Handling Exceptions Raised in Triggers

When you write triggers that include SQL statements, PL/SQL
statements, or calls to user–named subprograms, you should consider
how you will handle any exceptions that are raised. Depending on the
behavior desired, you can respond to exceptions in one of three ways:

• Write exception handlers in the trigger to handle all raised
exceptions.

• Take advantage of Oracle Forms default post–failure trigger
processing by deliberately omitting exception handlers; when an
exception is raised, the trigger fails, and the appropriate
post–failure processing occurs.

• Write exception handlers for only the specific exceptions you
want to handle in the trigger, and leave any other exceptions
unhandled to deliberately cause the trigger to fail.

1 – 5Handling Runtime Errors

Responding to Errors

When an error occurs, you can use the following built–in subprograms
to get information about the error, including the error number, type, and
message:

• ERROR_TYPE (returns CHAR)

• ERROR_CODE (returns NUMBER)

• ERROR_TEXT (returns CHAR)

• DBMS_ERROR_CODE (returns NUMBER)

• DBMS_ERROR_TEXT (returns CHAR)

Evaluating the Success or Failure of Built–ins

A built–in subprogram can have one of three outcomes: success, failure,
or fatal error. When a built–in subprogram fails, a runtime error occurs,
and Oracle Forms responds by issuing the appropriate error message.
However, no exception is raised in the trigger. For this reason, the
trigger itself does not fail, and any subsequent statements in the trigger
are executed.

When you call built–in subprograms in triggers, you will often want to
trap the success or failure of the subprogram so that you can either
correct any errors or cause the trigger to fail explicitly. This is
particularly true when subsequent trigger statements depend on the
successful outcome of a preceding built–in subprogram.

To trap the success or failure of a built–in subprogram, use the following
Oracle Forms built–in functions:

• FORM_SUCCESS (returns BOOLEAN)

• FORM_FAILURE (returns BOOLEAN)

• FORM_FATAL (returns BOOLEAN)

These functions report on the outcome of the most recently executed
built–in subprogram. In the following When–Button–Pressed trigger,
the function FORM_SUCCESS is used to test the outcome of the
GO_BLOCK built–in procedure:

Go_Block(’xyz_block’);

IF NOT Form_Success THEN

––handle the error

END IF;

1 – 6 Forms Advanced Techniques

This test detects both fatal and failure–type errors, and so is more
encompassing than FORM_FAILURE or FORM_FATAL used alone.

Handling Errors in Built–in Subprograms

When a built–in subprogram fails or causes a fatal error, you might want
to direct the trigger from which the subprogram was called to fail, rather
than allowing Oracle Forms to continue processing subsequent trigger
statements.

In a previous topic, you saw that a trigger fails when it raises an
unhandled exception. However, because errors in built–in subprograms
do not raise exceptions, you must raise an exception explicitly in your
code to cause a trigger to fail:

/* When–Button–Pressed Trigger: */

Go_Block(’xyz_block’);

IF NOT Form_Success THEN

RAISE Form_Trigger_Failure;

END IF;

END IF;

Because this trigger does not have an exception handling section, raising
an exception causes the trigger to fail, and Oracle Forms performs the
post–failure processing appropriate for the trigger. Although any valid
exception can be raised to cause a trigger to fail, the example uses the
built–in exception FORM_TRIGGER_FAILURE.

Raising the FORM_TRIGGER_FAILURE Exception

The FORM_TRIGGER_FAILURE exception is a predefined PL/SQL
exception available only in Oracle Forms. Because it is predefined, you
can raise this exception without having to first define it in the
declarative section of a trigger or user–named subprogram.

Indeed, this exception is used so often in Oracle Forms that it is common
to write a user–named procedure that can be used to test the outcome of
built–in procedures and functions:

/* user–named subprogram: */

PROCEDURE Check_Builtin IS

BEGIN

IF NOT Form_Success THEN

RAISE Form_Trigger_Failure;

END IF;

END;

1 – 7Handling Runtime Errors

You can define the procedure in a form or an attached library and then
call it from any trigger in your form:

/* When–Button–Pressed Trigger: */

Go_Block(’xyz_block’);

Check_Builtin;

Note: Do not use the internal error code associated with the
FORM_TRIGGER_FAILURE exception, because the internal error code
can change without notice.

Handling Errors in User–Named Triggers

User–named triggers are invoked by calling the EXECUTE_TRIGGER
built–in subprogram:

/* Built–in Trigger: */

statement a;
Execute_Trigger(’my_user_named_trigger’);

statement b;

When an unhandled exception is raised in a user–named trigger, the
user–named trigger fails, but the exception does not propagate to the
calling trigger. Rather, Oracle Forms treats the failure as an error in the
built–in procedure EXECUTE_TRIGGER, and sets the return values of
the built–in error functions accordingly. Thus, the outcome of a
user–named trigger can be trapped in the same way as a call to any
other built–in subprogram; that is, by evaluating the built–in error
functions:

/* Built–in Trigger: */

statement a;
Execute_Trigger(’my_usernamed_trigger’);

IF NOT Form_Success THEN

RAISE Form_Trigger_Failure;

END IF;

statement b;

1 – 8 Forms Advanced Techniques

Error Handling for Stored Procedures

There are three primary methods for trapping ORACLE errors that are
returned from the kernel during the processing of your PL/SQL code:

• checking DBMS_ERROR_TEXT and DBMS_ERROR_CODE
built–in subprograms within a form–level ON–ERROR trigger

• creating appropriate user–defined exceptions

• evaluating the SQLCODE and SQLERRM functions in a WHEN
OTHERS exception handler

Checking DBMS_ERROR_TEXT, DBMS_ERROR_CODE

From within an ON–ERROR trigger, you can check to see if the
ERROR_CODE function reports any of the following database–related
errors:

40501: ORACLE err – unable to reserve record for update or delete

40502: ORACLE err – unable to read list of values

40505: ORACLE err – unable to perform query

40506: ORACLE err – unable to check for record uniqueness

40507: ORACLE err – unable to fetch next query record

40508: ORACLE err – unable to INSERT record

40509: ORACLE err – unable to UPDATE record

40510: ORACLE err – unable to DELETE record

40512: ORACLE err – unable to issue SAVEPOINT command

40513: ORACLE err – unable to get date/time from database

40504: ORACLE err – unable to execute a gname trigger

40511: ORACLE err occurred while executing a gname trigger

Once you know that some database error has caused form processing to
fail, you can interrogate the DBMS_ERROR_TEXT and
DBMS_ERROR_CODE functions to determine exactly what server error
has occurred. The full text of the error message is available in the return
value for DBMS_ERROR_TEXT.

User–Defined Exceptions

Although PL/SQL includes many pre–defined exceptions—such as
NO_DATA_FOUND, DUP_VAL_ON_INDEX, and VALUE_ERROR—
they will never completely cover the range of ORACLE errors you may
need to trap. So PL/SQL provides the facility to define your own
exceptions and associate them with the occurrence of a particular Oracle
error of your choice. The following code illustrates how to use
EXCEPTION_INIT to tell PL/SQL to report an error of your choice. For

Example:

1 – 9Handling Runtime Errors

more information refer to the PL/SQL User’s Guide and Reference, Version
2.0.

/*
** Example of declaring your own error–driven exceptions

*/

DECLARE

 /*

 ** First declare the name of the exception

 */

 cannot_del_parent EXCEPTION;

 /*

 ** Then associate it with the ORA–2292 error

 ** which is ”violated integrity constraint XYZ –

 ** child record found”. Note error number is negative.

 */

 PRAGMA Exception_Init (cannot_del_parent, –2292);

BEGIN

 DELETE FROM PARENT_TABLE

 WHERE PRIMARY_KEY_FIELD = :BLOCK.PK;

 /*

 ** If we get here, then things went ok.

 */

EXCEPTION

 /*

 ** If our error arises, then this exception

 ** will be raised. We can deal with it elegantly.

 */

 WHEN cannot_del_parent THEN

 Message(’You cannot remove open ’||

 ’order number’||:block.pk);

 RAISE Form_Trigger_Failure;

END;

This method is best when the ORACLE error number itself is enough to
allow your application to determine what happened. User–defined error
messages can be returned from database triggers, procedures, or
functions, as shown earlier with RAISE_APPLICATION_ERROR.
Creating corresponding user–defined exceptions is a natural counterpart
to trapping the errors you raise.

However, some errors returned by the kernel contain the name of the
constraint (out of many possible ones) that has been violated, always
returning a single ORACLE error number. An example of this would be:

ORA–02290: violated check constraint (SCOTT.C_CK)

Example 1:

1 – 10 Forms Advanced Techniques

Trapping SQLCODE and SQLERRM

In this case, we need access to the error message itself to gain
knowledge about what went wrong. The WHEN OTHERS clause must
be used so the SQLCODE and SQLERRM can be captured and
evaluated. These two PL/SQL functions, which mimic their
PRO*Language analogs, are only available within an exception handler,
and are most useful in a WHEN OTHERS clause. In addition, the
function called strip_constraint_name will accept the text of an Oracle
error and return in capital letters the name of the constraint that was
violated. Consider two examples:

/*
** Example of using SQLCODE/SQLERRM in WHEN OTHERS */

*/

DECLARE

 lv_sqlcode NUMBER; /* Place to hold SQLCODE */

 lv_sqlerrm VARCHAR2(240); /* Place to hold SQLERRM */

 lv_constr VARCHAR2(41); /* Place for Constraint Name */

BEGIN

 UPDATE PARENT_TABLE

 SET SOME_FIELD = 5

 WHERE PRIMARY_KEY_FIELD = :BLOCK.PK;

 /*

 ** If we get here, then things went ok.

 */

EXCEPTION

 /*

 ** If an error arises, the exception handler gets control

 */

 WHEN OTHERS THEN

 lv_sqlcode := SQLCODE;

 lv_sqlerrm := SQLERRM;

 IF (lv_sqlcode = –2290) THEN

 /*

 ** Strip out the name of the violated constraint

 */

 lv_constr := strip_constraint_name(lv_sqlerrm);

 IF (lv_constr = ’SCOTT.C_CK’) THEN

 Message(’Code must be A,B, or C’);

 RAISE Form_Trigger_Failure;

 END IF;

 END IF;

END;

Example 2:

1 – 11Handling Runtime Errors

/* STRIP_CONSTRAINT_NAME: Returns constraint name from error
** Constraint name should appear enclosed by parentheses

** in the Oracle errors 02290–02292 and 02296–02299.

** Return the text between the parentheses when passed

** the error message text.

*/

FUNCTION strip_constraint_name(errmsg VARCHAR2)

RETURN VARCHAR2

IS

 lv_pos1 NUMBER;

 lv_pos2 NUMBER;

BEGIN

 lv_pos1 := INSTR(errmsg, ’(’);

 lv_pos2 := INSTR(errmsg, ’)’);

 IF (lv_pos1 = 0 OR lv_pos2 = 0) THEN

 RETURN(NULL);

 ELSE

 RETURN(UPPER(SUBSTR(errmsg, lv_pos1+1,

 lv_pos2–lv_pos1–1)));

 END IF;

END;

To trap ORACLE errors that are a result of database block INSERT,
UPDATE, and DELETE operations, you must code the respective
ON–INSERT, ON–UPDATE, and/or ON–DELETE triggers to actually
perform the DML operations so that you can trap the errors.

Errors related to the features discussed above that could be trapped by
the first example are:

• After a SET ROLE:

 ORA–01919: Role ROLENAME does not exist

 ORA–01979: Missing or invalid password

• After relevant DML:

 ORA–00001: Duplicate key in index

 ORA–01400: Mandatory NOT NULL column missing

 ORA–01407: cannot update mandatory (NOT NULL)

 column to NULL

 ORA–04088: error during execution of trigger

 (OWNER.TRIGGERNAME)

 ORA–04092: trigger may not commit or rollback

1 – 12 Forms Advanced Techniques

• On return from a database procedure, or a trigger, or a function:

 ORA–06550: PL/SQL Error occurred

 ORA–06501: PROGRAM_ERROR if attempting to run against V6.

 ORA–20000:

 ...

 ...(user–defined error range)

 ...

 ORA–20999:

Errors related to the features discussed above that could be trapped by
the second example are:

• After INSERT/UPDATE with bad foreign key:

 ORA–02291:violated integrity constraint (OWNER.CONSTRAINT)–

 parent key not found

• After DELETE without CASCADE when dependent children
exist:

 ORA–02292:violated integrity constraint (OWNER.CONSTRAINT)–

 child record found

• After INSERT/UPDATE:

 ORA–02290: violated check constraint (OWNER.CONSTRAINT)

• On return from database procedure/trigger/function:

 ORA–06550: PL/SQL Error occurred

 ORA–06501: PROGRAM_ERROR if attempting to run against V6.

 ORA–20000:

 ...

 ... (user–defined error range)

 ...

 ORA–20999:

C H A P T E R

2

T

2 – 1Stored Procedures and Database Triggers

Stored Procedures and
Database Triggers

his chapter discusses support in the Oracle7 Server for stored
procedures and database triggers. The topics include:

• About Stored Procedures 2 – 2

• Creating and Modifying Stored Procedures 2 – 5

• Calling Stored Procedures 2 – 9

• About Database Triggers 2 – 14

• Creating and Editing Database Triggers 2 – 17

• Declarative Database Constraints 2 – 20

2 – 2 Forms Advanced Techniques

About Stored Procedures

Oracle Forms supports application partitioning. When designing
applications for deployment against the Oracle7 Server, you can
include calls to server–side, stored PL/SQL subprograms (stored
procedures and stored functions) directly in the PL/SQL code of your
Oracle Forms triggers and user–named routines. This includes the
ability to execute procedures and functions defined within a package,
as well as the ability to access (drag and drop) any of the subprograms
at either the local or remote database server.

Processing within the form is on hold until the stored procedure or
function completes execution, so the network and database load must
be considered with regard to response time. The first time a user
executes a stored procedure or function, the executable code is cached
in the Oracle7 SGA––the shared global area. Because the code is
cached, subsequent uses of the executable are faster. The first time any
subprogram within a package is referenced, the entire package is
loaded and becomes shareable.

Use a database procedure instead of an Oracle Forms procedure when:

• The procedure provides standard functionality that other tools
should share—such as validation and calculations.

• The procedure performs a significant number of DML
operations—perhaps to have them performed in a bundle by the
server.

• If new PL/SQL Version 2 features such as TABLES, RECORDS,
or TYPES are required—since Oracle Forms Version 4.5 includes
PL/SQL Version 1.1.

The executable form .FMX file can be significantly larger if references to
stored procedures are in large packages.

2 – 3Stored Procedures and Database Triggers

Restrictions When Using Stored Procedures

Observe the following restrictions when working with stored
procedures:

• Since Oracle Forms creates the access routine for each stored
subprogram to which your trigger or user–named routine refers,
it is not possible to write a form containing calls to stored
procedures or functions that will generate against both Oracle
Version 6.0 and Version 7.0. Once a form includes a reference to
at least one stored subprogram, then it must be generated
against a Version 7.0 database, otherwise compilation errors
result when the names of stored subprograms cannot be resolved
by the PL/SQL compiler.

• Character (CHAR or VARCHAR2) values passed in to a stored
procedure or function, passed out from a stored procedure, or
returned from a stored function may not exceed 2000 characters.
Actual character parameters exceeding 2000 characters will be
truncated to 2000 before passing to the stored procedure or
function. Any OUT character parameters or character return
values exceeding 2000 characters will be truncated to a length of
2000. The truncation that may occur on IN, OUT or return
character values from a procedure or function is performed
without raising the PL/SQL VALUE_ERROR exception, and
without raising an Oracle Forms truncation error.

• Calling stored procedures and functions is not supported from a
menu PL/SQL context.

• Changes made to stored subprogram definitions may not be
usable by the form developer until after re–establishing a
connection to the server.

Standard Packages with Oracle7 Server

The following packages are created when the Oracle7 Server kernel is
installed:

• dbms_alert

• dbms_ddl

• dbms_describe

• dbms_lock

• dbms_mail

• dbms_output

2 – 4 Forms Advanced Techniques

• dbms_pipe

• dbms_session

• dbms_snapshot

• dbms_standard

• dbms_transaction

• dbms_utility

See the appendix of the Oracle7 Server Application Developer’s Guide that
describes these packages, their contents and usage.

Only the package dbms_standard is a standard extension. This means
that its procedure names are inserted into the scope just outside a
package or top–level procedure, but before the kernel’s package
STANDARD.

Public synonyms for supplied packages are created during execution,
and EXECUTE privilege is granted to public.

You can invoke procedures included in any of these packages from
Oracle Forms by using the syntax <package>.<procedure>; for
example:

DBMS_SESSION.SET_ROLE(’role’);

For information on the procedures included in these packages refer to
the Oracle7 Application Developer’s Guide.

2 – 5Stored Procedures and Database Triggers

Creating and Modifying Stored Procedures

You can create, edit, compile, and browse stored procedures directly
from the Oracle Forms Designer if you have the appropriate privileges.

Allows the user to execute the public subprogram
defined in a stored program unit. Public
subprograms are listed in the package
specification.

Allows the user to create, modify, and compile
stored program units.

Allows the user to compile a stored program unit.

Allows the user to drop a stored program unit.

To create a stored procedure:

1. In the Navigator, expand the Database Objects node, then select the
Stored Procedures node and choose Navigator–>Create.

The New Program Unit dialog appears.

2. Specify name and type, either procedure, function, package spec or
package body.

The Stored Program Unit Editor appears. For information about
using the Stored Program Unit Editor, see “The Stored Program
Unit Editor” later in this chapter.

3. In the Stored Program Unit Editor, define and compile the desired
program units.

When you generate a form, menu, or library containing references
to stored procedures, functions, or packages, Oracle Forms must
perform the following:

• Ensure that the stored subprogram to which you make reference
exists on the server during compilation.

• Include an intermediate access routine for each stored
subprogram you reference. There will be one access routine for
each procedure, function or package that is called. If you call
functions or procedures within a package, they will use the
access routine associated with the entire package. The access
routines handle the integration between PL/SQL Version 1 and
Version 2, and are included in the .FRM file of your generated
form. These access routines are not externalized.

Execute Privilege

Create Privilege

Compile Privilege

Drop Privilege

2 – 6 Forms Advanced Techniques

To edit a stored procedure:

1. In the Navigator, expand the Database Objects and Stored
Procedures nodes.

Oracle Forms displays any stored procedures that you either own
or have privileges to execute, compile, or drop.

2. Double–click on the desired stored procedure.

The Stored Program Unit Editor is displayed.

3. Modify the stored procedure as desired and then save it.

Stored Program Unit Editor

Using the Stored Program Unit Editor, you can create, edit, and
compile the source text for stored procedures.

Stored Program Unit Editor Commands and Fields

The title reflects the owner and name of the
currently displayed stored program unit in the
form:

stored program unit –
<owner>.<programunit_name>

The New command allows the user to enter the
source text for a new program unit. A new
program unit is only visible within the Stored
Program Unit Editor. New program units are not
stored in the database until the first compile
operation.

The New button is only enabled if the current user
has create privileges for stored program units
owned by the user currently selected in the Owner
combo box.

The Save command synchronizes the source text
displayed in the editor with the source text stored
in the database and compiles the stored program
unit on the server–side.

Title

New

New

Save

2 – 7Stored Procedures and Database Triggers

The Revert command discards any changes made
in the source text pane and restores the stored
program unit to its previous state. The restored
state is the most recent of the following:

• after the last navigation to this stored program
unit or its creation with the New button

• after the last selection of the Compile button

The Revert button is only enabled when there have
been changes to the source text pane since one of
the above states.

The Drop command drops an existing stored
program unit or aborts the creation of a new one
(after seeking confirmation via an alert).

After dropping the stored program unit, the editor
displays the preceding stored program unit in the
Name combo box if one exists; otherwise, it
displays the next stored program unit. If there are
no stored program units for the current owner, the
editor is empty.

The Drop button is enabled only if the stored
program unit is new or the current user has drop
privileges for the currently displayed stored
program unit.

The Close command closes the Stored Program
Unit Editor window. If the source text of the
currently displayed stored program unit has been
modified, the editor presents an Unsaved Changes
alert.

The Owner combo box identifies the user who
owns the stored program unit currently displayed
in the editor.

Selecting a new entry in the Owner combo box
updates the Name combo box and displays the first
stored program unit in the Name list (if one exists).

Revert

Drop

Close

Owner Combo
Box

2 – 8 Forms Advanced Techniques

The Name combo box displays the name of the
currently selected stored program unit.

The Name combo box contains the names of all
accessible stored program units owned by the user
currently selected in the Owner combo box. A
program unit is accessible if the current user has
execute privileges on it.

Selecting a new entry in the Name combo box
updates the editor to display the newly selected
stored program unit. If the source text of the
current stored program unit has been modified, the
editor presents an Unsaved Changes alert.

The source text pane displays the source text of the
current stored program unit. It is editable only if
the current user has create privileges for the stored
program unit; otherwise, it is read–only.

The Compilation Message pane displays any
compilation messages associated with the current
stored program unit.

Clicking on a compilation message moves the text
cursor in the source pane to the line and column
associated with the message.

The Compilation Message pane is hidden when the
current stored program unit has no associated
error messages.

The Status Bar displays information about the state
of the current stored program unit.

Name Combo Box

Source Text Pane

Compilation
Message Pane

Status Bar

2 – 9Stored Procedures and Database Triggers

Calling Stored Procedures

A database procedure is a PL/SQL block designed to be executed by
the server–side PL/SQL engine. It may accept inputs, and may return
outputs, neither of which is mandatory. It runs under the security
domain (or schema) of the creator of the procedure, not the current user.

The current user needs EXECUTE privileges on the procedure to use it.
One important difference between PL/SQL procedures for Oracle
Forms and procedures for the database is that server–side procedures
do not understand references to Oracle Forms bind variables (such as
:BLOCK.ITEMNAME, :GLOBAL.VARNAME, or
:SYSTEM.CURSOR_ITEM). Any data that procedures need for
processing must be passed into the ”black box” by way of parameters
of appropriate datatype, or by package variables, or by selecting from
tables.

You should structure your Oracle Forms user–named routines to accept
inputs and return results in parameters. This will make the eventual
migration of the procedure into the database as painless as adding the
word CREATE in front of the PROCEDURE declaration (in addition to
running the resulting script in SQL*PLUS).

Syntax Call a stored procedure or function from within Oracle Forms
exactly as you would invoke a user–named routine:

DECLARE

 ld DATE;

 ln NUMBER;

 lv VARCHAR2(30);

BEGIN

/*

** Calling Form–Level Procedure/Function

*/

 forms_procedure_name(ld,ln,lv);

 ld := forms_function_name(ln,lv);

/*

** Calling Database Procedure/Function

*/

 database_procedure_name(ld,ln,lv);

 ld := database_function_name(ln,lv);

END;

2 – 10 Forms Advanced Techniques

Supported Datatypes for Parameters/Return Values Stored
procedures, functions, and packages are created using Version 2.0 of
PL/SQL within the Oracle7 database. Although Oracle Forms Version
4.5 is built on PL/SQL Version 1.1, the following PL/SQL Version 2.0
datatypes are also supported for parameters and as function return
values:

• VARCHAR2––maximum of VARCHAR2(2000)

• NUMBER

• DATE

• BOOLEAN

Recall that your stored procedures and functions can be written
internally using all new PL/SQL Version 2.0 datatypes and
functionality. The above restriction on datatypes applies only to the
interface that your stored routines have with their Version 1.1 PL/SQL
counterparts, namely parameters and function return values.

However, if you reference a package, regardless of which procedures
you may use in your Oracle Forms triggers or procedures, then all of
the subprograms in the package must use only the supported datatypes
above for parameters.

A restriction has been made on referring to stored subprograms that
contain parameters defined as:

TABLE%ROWTYPE

or
TABLE.COLUMN%TYPE

These are, therefore, unsupported datatype specifications even though
their expansion may refer to a supported data type for a parameter of a
stored procedure accessed from Oracle Forms.

An attempt to reference a stored procedure or stored function that uses
unsupported parameter or return–value datatypes will result in the
failure to recognize the stored subprogram, and an error is reported
when the form is generated:

PL/SQL error 313 at line xxx, column yyy

’PROCNAME’ not declared in this scope

or

PL/SQL error 201 at line xxx, column yyy

identifier ’FUNCTNAME’ must be declared.

Example:

2 – 11Stored Procedures and Database Triggers

Default Values for Formal Parameters Default values for formal
parameters are not supported. However, you can create a stored
package that contains:

• overloaded procedure specification in the package spec

• a private implementation using default parameters in the
package body

A form could invoke the package procedure ’Test.Test’ with zero, one,
or two VARCHAR2 arguments. After creating the package spec and
body shown in the example below, the form could invoke:

 test.test;

 test.test(’Hi’);

 test.test(’Hi’, ’There’);

This example shows the code on the server side:

 CREATE PACKAGE Test IS

PROCEDURE Test; –– Available to Forms4.5 Client

PROCEDURE Test(a VARCHAR2); –– Available to Forms4.5 Client

PROCEDURE Test(a VARCHAR2,

 b VARCHAR2); –– Available to Forms4.5 Client

END Test;

CREATE PACKAGE BODY Test IS

 PROCEDURE Private_Test(a in VARCHAR2 := ’Hello’

 b in VARCHAR2 := ’There’) IS

 BEGIN

 Dbms_Output.Put_Line(a);

 Dbms_Output.Put_Line(b);

 END;

PROCEDURE Test IS

BEGIN

 Private_Test;

END;

 PROCEDURE Test(a VARCHAR2) IS

 BEGIN

 Private_Test (a);

 END;

 PROCEDURE Test(a VARCHAR2 , b VARCHAR2) IS

 BEGIN

 Private_Test (a, b);

 END;

END Test;

Example:

2 – 12 Forms Advanced Techniques

Supported Constructs When invoking a stored procedure or function,
only the following subset of possible usages is supported:

• ProcName(arg1,...,argN)

• FuncName(arg1,...,argN)

• PackName.ProcName(arg1,...,argN)

• PackName.FuncName(arg1,...,argN)

Accessing Subprograms in Another User’s Schema To access a
subprogram (i.e., procedure or function) in another user’s schema or
one in a remote database, you must create a synonym to hide the
username or Db_Link name from the PL/SQL compiler such that the
result takes the form:

• ProcSynonym(arg1,...,argN)

• FuncSynonym(arg1,...,argN)

• PackSynonym.ProcName(arg1,...,argN)

• PackSynonym.FuncName(arg1,...,argN)

You can create synonyms to nickname remote stored programs, hiding
the username or Db_Link:

• Subprogram@DbLink

• Package@DbLink

• Package.Subprogram@DbLink

• Schema.Subprogram@DbLink

• Schema.Package

• Schema.Package@DbLink

• Schema.Package.Subprogram@DbLink

Where subprogram is either a procedure or a function.

To call the package function ’LIBOWNER.LIB_HR.GET_SSN’, you
could create a synonym for the LIB_HR package that includes the
schema name (the owner name) as follows:

CREATE SYNONYM lib_hr_syn

FOR libowner.lib_hr;

Then invoke the function from within your form as follows:

ss_num := lib_hr_syn.get_ssn(:Emp.Empno);

2 – 13Stored Procedures and Database Triggers

If the package function is at a remote site accessible through a database
link named basel, for example, then you could create a synonym for the
package, including the database link name:

CREATE SYNONYM basel_lib_hr_syn

FOR libowner.lib_hr@basel;

and invoke the function within your PL/SQL code as:

ss_num := basel_lib_hr_syn.get_ssn(:Emp.Empno);

Alternately, you could create a synonym for the function itself, hiding
both the schema and Db_Link information:

CREATE SYNONYM basel_lib_hr_get_ssn_syn

FOR libowner.lib_hr.get_ssn@basel;

and invoke the function from Oracle Forms as:

ss_num := basel_lib_hr_get_ssn_syn(:Emp.Empno);

Of course, any of the synonyms above could have been created as
PUBLIC SYNONYMS if appropriate.

Name Resolution When a form is generated, the PL/SQL compiler
may encounter the name of an identifier that could be a procedure or
function. The PL/SQL compiler uses a precedence mechanism to
resolve ambiguities.

If an identifier such as PROCNAME is encountered that has the
structure of a procedure or function, the compiler will use the first
match found in the following search order:

1. Is it defined within the current PL/SQL block?

2. Is it a standard PL/SQL command?

3. Is it an Oracle Forms built–in subprogram procedure or function?

4. Is it a user–named procedure or function?

5. Is it defined in package DBMS_STANDARD on the serverside?

6. Does the current user have access to any such procedure or
function on the server side?

If the answer is ”no” to all of the above, then the compiler signals an
error:

PL/SQL error 313 at line xxx, column yyy

’PROCNAME’ not declared in this scope

or

PL/SQL error 201 at line xxx, column yyy

identifier ’FUNCTNAME’ must be declared.

Example:

2 – 14 Forms Advanced Techniques

About Database Triggers

A database trigger is nearly identical in concept to the Oracle Forms
trigger. The difference lies in the event that causes the trigger to fire
and the location where the subsequent code is performed.

Database triggers are PL/SQL blocks that are associated with a given
table; they fire upon the execution of UPDATE, INSERT, or DELETE
operations against that table. They may fire BEFORE or AFTER each
row the operation affects, or each statement. The combinations give a
maximum possibility of twelve triggers for any table. While a trigger
executes, it runs under the security domain (schema) of its creator, not
the current user.

Within the body of the database trigger, your PL/SQL code may refer
to both the old and the new values of the columns being affected. For
an INSERT, the old values are non–existent, while for a DELETE, the
new values do not exist. This makes data validation simple to
implement, and auditing changed values extremely easy.

A database trigger can perform complex data verification that could
not be feasibly declared as a constraint. If a database trigger fails with
an error, the triggering statement (i.e., the INSERT, UPDATE, or
DELETE that fired the trigger) is rolled back. In a simple example, you
could write the following trigger to prevent updates on the EMP table
during weekends, unless the current user exists in a special
WEEKEND_UPDATE_OK table, in which case the update is allowed.

CREATE TRIGGER no_weekend_updates
BEFORE UPDATE

 ON EMP

DECLARE

 day_of_week NUMBER(2) := TO_NUMBER(TO_CHAR(SYSDATE,’D’));

 dummy CHAR(1);

BEGIN

 IF (day_of_week in (1,7)) /* Sunday,Saturday */

 THEN

 BEGIN

 SELECT ’X’/* Check Exceptions Table */

 INTO dummy

 FROM WEEKEND_UPDATE_OK

 WHERE USERID = USER;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN /*Not Exception*/

 RAISE_APPLICATION_ERROR(–20011,

 ’Try again on Monday!’);

 END;

 END IF;

END;

2 – 15Stored Procedures and Database Triggers

Besides providing arbitrarily complex data validation, database
triggers can also be used to perform any cause–and–effect sequence.
This makes database triggers particularly well suited for data auditing
operations, data replication, and distributed data integrity checking
(since constraints cannot reference remote databases). If database
triggers are written to supplant Oracle Forms–side triggers (e.g. for
table auditing) then the forms–side functionality will have to be
disabled to avoid duplicating table operations.

One alternative is to use a package variable as a flag to communicate
between the form and the database–side triggers (or procedures). In
that manner, a decision can be made within the trigger or procedure on
whether a particular operation might have already been performed by
the Oracle Forms code.

Triggers (as well as stored procedures and functions) raise errors with
the RAISE_APPLICATION_ERROR procedure. The
RAISE_APPLICATION_ERROR procedure assigns an error number
within the special range 20000–20999 and provides an error message.
Since it is your PL/SQL database trigger that prepares the error
message, the message can vary. Within the Oracle Forms application,
these errors can be trapped with the methods mentioned in the next
section.

Recall that database triggers fire in response to a DML statement such
as INSERT, UPDATE, or DELETE. So during normal Oracle Forms
commit–time processing, as Oracle Forms issues INSERT statements to
add newly entered records to the database, UPDATE statements to
effect changes by the operator to existing records, and DELETE
statements to remove records deleted by the operator from the
database; database triggers will fire if enabled.

For example, consider the scenario where the following database
triggers have been defined and enabled on the EMP table:

• BEFORE DELETE

• BEFORE DELETE FOR EACH ROW

• AFTER DELETE

• AFTER DELETE FOR EACH ROW

2 – 16 Forms Advanced Techniques

When the Oracle Forms operator deletes a record that has been
queried, the following sequence of events occurs:

1. Oracle Forms locks the record to be deleted.

2. Operator presses [Commit].

3. Oracle Forms fires the PRE–COMMIT trigger.

4. Oracle Forms fires the PRE–DELETE trigger.

5. Oracle Forms issues a DELETE statement to delete the row.

6. The database fires the BEFORE DELETE trigger.

7. The database fires the BEFORE DELETE FOR EACH ROW trigger.

8. The database deletes the record.

9. The database fires the AFTER DELETE FOR EACH ROW trigger.

10. The Database AFTER DELETE trigger fires.

11. Oracle Forms fires the POST–DELETE trigger.

12. Oracle Forms fires the POST–COMMIT trigger.

Recall that any error raised during Commit processing causes Oracle
Forms to roll back the currently committing transaction to the
savepoint that was issued when the Commit sequence began. If any
Database trigger fails (by raising an unhandled error or calling a
RAISE_APPLICATION_ERROR) as a result of a DML statement that
Oracle Forms has issued automatically, then an
”Oracle Error Occurred ...” message will appear. An error raised as a
result of a DML statement in your PL/SQL trigger, on the other hand,
can be handled gracefully, as discussed below. If not handled, the error
will produce the message: ”XXX–YYYYYY trigger raised unhandled
exception.”

2 – 17Stored Procedures and Database Triggers

Creating and Editing Database Triggers

You can create, edit, compile, and browse database triggers directly
from the Oracle Forms Designer if you have the appropriate privileges.

Allows the user to execute the database trigger.

Allows the user to create, modify, and compile
database triggers.

Allows the user to compile a database trigger.

Allows the user to drop a database trigger.

To create a database trigger:

1. In the Navigator, expand the Database Objects and Tables nodes,
then select and expand the desired table. Select the Triggers node
and then choose Navigator–>Create.

The Database Trigger Editor appears. For information about using
the Database Trigger Editor, see “The Database Trigger Editor”
later in this chapter.

2. In the Database Trigger Editor, define and compile the desired
program units.

To edit a database trigger:

1. In the Navigator, expand the Database Objects and Tables nodes,
then select and expand the desired table.

Oracle Forms displays any database triggers associated with the
current module.

2. Double–click on the desired database trigger.

The Database Trigger Editor appears.

3. In the Database Trigger Editor, modify the database trigger as
desired and then compile it.

Execute Privilege

Create Privilege

Compile Privilege

Drop Privilege

2 – 18 Forms Advanced Techniques

Database Trigger Editor

The Table Owner combo box identifies the user
who owns the database trigger currently displayed
in the editor.

Selecting a new entry in the Table Owner combo
box updates the Table combo box and displays the
first database trigger in the Name list (if one
exists).

The Table combo box displays the tables owned by
the current user.

The Name combo box displays the name of the
currently selected database trigger.

The Name combo box contains the names of all
accessible database triggers owned by the user
currently selected in the Owner combo box. A
database trigger is accessible if the current user has
execute privileges on it.

Selecting a new entry in the Name combo box
updates the editor to display the newly selected
database trigger. If the source text of the current
database trigger has been modified, the editor
presents an Unsaved Changes alert.

When defining a database trigger, you can specify
the trigger timing, that is, you can specify when the
trigger action is to be executed in relation to the
triggering statement: before or after the triggering
statement.

A triggering event or statement is the SQL
statement that causes a trigger to be fired. A
triggering event can be an INSERT, UPDATE, or
DELETE statement for a specific table.

When you create a database trigger, you can
specify a trigger restriction. A trigger restriction is
an option available for triggers that are fired for
each row. Its function is to conditionally control
the execution of a trigger. A trigger restriction is
specified using a WHEN clause.

Allows you to specify the PL/SQL code to be used
as the body of the database trigger.

Table Owner
Combo Box

Table Combo Box

Name Combo Box

Triggering

Statement

For Each Row

Trigger Bocy

2 – 19Stored Procedures and Database Triggers

Creates a new code object of the same type and
scope as the current code object. For example,
when the current object is a trigger attached to an
item, choosing New displays the Triggers LOV that
allows you to create a new trigger attached to the
same item. When the current object is a program
unit, choosing New invokes the New Program Unit
dialog.

Compiles and saves the code in the Source Code
field. The compiler detects syntax errors, semantic
errors, and references to non–existent objects,
procedures, and functions. When you compile
successfully, the status line displays the message
<Successfully Compiled>.

Undoes any changes that were made to the source
code since the editor was invoked or since the last
Apply or Revert command. Revert is disabled
when there are no unapplied changes.

The Drop command drops an existing database
trigger or aborts the creation of a new one (after
seeking confirmation via an alert).

After dropping the database trigger, the editor
displays the preceding database trigger in the
Name combo box if one exists; otherwise, it
displays the next database trigger. If there are no
database triggers for the current owner, the editor
is empty.

The Drop button is enabled only if the database
trigger is new or the current user has drop
privileges for the currently displayed database
trigger.

Closes the Database Trigger Editor.

Moves the insertion point to the line at which an
error was detected in the Source Code field.

New

Save

Revert

Drop

Close

Clicking a
compilation
message

2 – 20 Forms Advanced Techniques

Declarative Database Constraints

A database constraint is a rule that governs the logical integrity of your
data. The rule is declared at table creation time, or can be added (with
some restrictions) after the fact to an existing table.

Entity Constraints

Entity constraints can declaratively enforce a column (or ordered group
of columns) to be NOT NULL, UNIQUE within the table, have a
DEFAULT value if none is specified on INSERT, and/or satisfy a more
complex logical condition given in a CHECK clause. These constraints
provide intra–table integrity.

Referential Constraints

Referential constraints provide the logical link between a master and a
detail table by establishing primary and foreign key relationships.
Database constraints protect your data by automatically enforcing at
the database level the rules you have declared. If you create a record in
a master table and one detail record, for example, the default operation
of database constraints restricts updating of the primary key of the
master record. Default database constraints also prevent deleting of
the master record (unless the ON DELETE CASCADE option is used
when declaring all of the foreign key references).

Strategies for Constraint Checking

Prior to Oracle7 Server, nearly all data integrity was provided at the
application level––for Oracle Forms, through triggers. The goal of
application–side logic is to stop bad data before it happens. Prior to
Oracle7 Server, the RDBMS might dutifully accept whatever data was
passed along through the application. To understand more about the
similarities and differences of the Oracle database versions, refer to the
Oracle7 Server Migration Guide.

The Oracle7 ability to perform implicit data verification at the kernel
level means that current systems that had been coded to guarantee data
integrity by the application will in essence be checking the same things
twice. To optimize, you might be tempted to strip out all application
logic and leave all constraint checking to the database. However, you
should weigh the benefits that constraints on both sides provide and
determine if checking things twice is too costly.

2 – 21Stored Procedures and Database Triggers

Database constraints provide the ability to centrally protect the
integrity of the data without necessarily coding the logic into each one
of the tools. However, the reason that logic was coded into the
application in the first place was to give the user immediate feedback
on errors, facilitating their rapid correction with online help and
appropriate error messages.

No user would appreciate entering a batch of fifty new orders, only to
press the [Commit] key and learn from ORACLE that the fourth order
violated an integrity constraint.

You will most likely prefer to check the data both at data entry time
and at commit time, recognizing that the small overhead of checking is
well worth the additional security it provides. Database Constraints
checking is more efficient than its application–based counterpart since
constraints are processed intelligently by the kernel, completely within
the realm (and RAM) of the kernel, and without additional network
trips back to the client.

When you upgrade from Version 6 to Oracle7 Server, all constraints
that may have been declared in Version 6 are initially disabled by
default. If you want to take advantage of database constraints, be
aware that all of the enabled constraints will be checked for each record
that is INSERTED, UPDATED, and DELETED (as appropriate). In
particular, newly enabled constraints can suddenly return new errors to
your application as they reject invalid data. The developer may wish to
add extra error handling into the current application to handle the
CONSTRAINT violations that may arise.

Note that if a column has been declared to have a DEFAULT value, the
kernel will assign the DEFAULT value only when the record is
INSERTed, provided that the given column is not listed among the
columns in the INSERT clause. Because Oracle Forms 4.5 always lists
ALL of the columns (i.e., database fields) in a block for INSERTS and
UPDATES, the DEFAULT will never automatically be assigned unless
the user either removes the field in question from the block (or marks it
as non–database), or else codes an ON–INSERT trigger to override the
normal Oracle Forms insert processing.

Also, be aware that some forms–based operations may become
unnecessary when constraints are enabled. For example, deleting detail
records when a corresponding master is removed, is internally handled
by the kernel if the ON DELETE CASCADE option is specified for the
parent–child foreign key relationship.

The Integrity Constraints option in the Oracle Forms New Block
window continues to function under Oracle7 as it did in V6.

2 – 22 Forms Advanced Techniques

Master/Detail Blocks and Referential Integrity

Applications that include master–detail blocks coordinated via the
automatically generated triggers and procedures in SQL*Forms 3.0
should require no modification when running against tables with
Declarative Referential Integrity constraints enabled. Oracle Forms
default logic will prevent the deletion of a master record when
outstanding detail records exist, unless the design specified the
Cascading Deletes option when creating the detail block. In that case,
Oracle Forms uses a PRE–DELETE trigger to first delete the detail
records, then deletes the master.

The order of operations was not critical running under ORACLE
Version 6, but an application that had moved the standard
PRE–DELETE logic to the POST–DELETE trigger instead would
encounter problems running against Oracle7 Server when
Primary/Foreign–Key relationships have been declared and enabled on
the server–side.

Waiting until the POST–DELETE trigger to delete the detail records
will cause Oracle Forms to issue the DELETE statement for the master
record while detail records remain, and an error will be generated by
the kernel:

ORA–02292: violated integrity constraint (OWNER.CONSTRAINT)

–– detail record found

However, if the foreign key relationship is specified with the ON
DELETE CASCADE option, then no problem will arise, and the Oracle
Forms POST–DELETE trigger will be needlessly performing an extra
DELETE statement to remove the detail records that the Cascade
Delete of the master already deleted.

So potentially any INSERT, UPDATE, or DELETE in your applications
could generate an error caused by violating an enabled constraint. To
add more sophisticated error handling to your existing forms (in the
wake of having enabled many new server–side constraints) see the
Error Handling Chapter.

C H A P T E R

3

TT

3 – 1User Exit Interface to Foreign Functions

User Exit Interface to
Foreign Functions

his chapter examines the user exit interface for invoking foreign
functions. The topics covered in this chapter include:

• About the User Exit Interface 3 – 2

• About Foreign Functions 3 – 3

• Oracle Precompiler Statements 3 – 5

• Creating a User Exit Interface to Foreign Functions 3 – 12

• Invoking a Foreign Function from a User Exit Interface 3 – 14

• A User Exit Interface on Microsoft Windows 13 – 16

• Accessing the Microsoft Windows SDK 3 – 25

3 – 2 Forms Advanced Techniques

About the User Exit Interface

Foreign functions are subprograms written in a 3GL programming
language that allow you to customize your Oracle Forms applications
to meet the unique requirements of your users. Foreign functions are
often used to enhance performance or provide additional functionality
to Oracle Forms.

In Oracle Forms, you can invoke a foreign function from a user exit
interface. A user exit interface allows you to call a foreign function by
using the USER_EXIT built–in from a trigger or a user–named
subprogram. Invoking a foreign function from the USER_EXIT built–in
returns an integer value to Oracle Forms indicating success, failure, or
a fatal error. Following the execution of the USER_EXIT built–in, the
values of the error variables in Oracle Forms—FORM_FAILURE,
FORM_FATAL, and FORM_SUCCESS—are set accordingly.

Foreign functions that you invoke from a user exit interface are
contained in an Oracle Forms dynamic link library or linked with
Oracle Forms Runform. Creating a user exit interface to a foreign
function requires you to link additional files to Oracle Forms dynamic
link libraries or Oracle Forms Runform. The additional files provide
information about the user exit interfaces and the entry points that
allow Oracle Forms to invoke foreign functions from a user exit
interface.

The implementation of a user exit interface to foreign functions in
Microsoft Windows is covered in the section “A User Exit Interface to
Foreign Functions on Microsoft Windows.” For information on
implementing a user exit interface to foreign functions in other
environments, refer to the Oracle Forms documentation for your
operating system.

Note: An alternative approach for calling a foreign function is from a
PL/SQL interface. The ORA_FFI built–in package provides a PL/SQL
interface for invoking foreign functions from Oracle Forms. For more
information on the ORA_FFI built–in package, refer to chapter 13,
“PL/SQL Interface to Foreign Functions.”

3 – 3User Exit Interface to Foreign Functions

About Foreign Functions

Foreign functions are subprograms written in a 3GL programming
language for customizing Oracle Forms applications. Foreign functions
can interact with Oracle databases, and Oracle Forms variables and
items. Although it is possible to access Oracle Forms variables and
items, you cannot call Oracle Forms built–in subprograms from a
foreign function.

Foreign functions can be used to perform the following tasks:

• Replace default Oracle Forms processing when running against a
non–Oracle data source using transactional triggers.

• Perform complex data manipulation.

• Pass data to Oracle Forms from operating system text files.

• Manipulate LONG RAW data.

• Pass entire PL/SQL blocks for processing by the server.

• Control real time devices, such as a printer or a robot.

Note: You should not perform host language screen I/O from a
foreign function. This restriction exists because the runtime
routines that a host language uses to perform screen I/O conflict
with the routines that Oracle Forms uses to perform screen I/O.
However, you can perform host language file I/O from a foreign
function.

Types of Foreign Functions

You can develop the following types of foreign functions:

• Oracle Precompiler foreign functions

• OCI (ORACLE Call Interface) foreign functions

• non–ORACLE foreign functions

You can also develop foreign functions that combine both the ORACLE
Precompiler interface and the OCI.

3 – 4 Forms Advanced Techniques

Oracle Precompiler Foreign Functions An Oracle Precompiler foreign
function incorporates the Oracle Precompiler interface. This interface
allows you to write a subprogram in one of the following supported
host languages with embedded SQL commands:

• Ada

• C

• COBOL

• FORTRAN

• Pascal

• PL/I

Note: Not all operating systems support all of the listed languages.
For more information on supported languages, refer to the Oracle
Forms documentation for your operating system.

With embedded SQL commands, an Oracle Precompiler foreign
function can access Oracle databases as well as Oracle Forms variables
and items. You can access Oracle Forms variables and items by using a
set of Oracle Precompiler statements that provide this capability.

Because of the capability to access both Oracle databases and Oracle
Forms variables and items, most of your foreign functions will be
Oracle Precompiler foreign functions. For more information on the
Oracle Precompiler interface, refer to the Programmer’s Guide to the
Oracle Precompilers.

Oracle Call Interface (OCI) Foreign Functions An OCI foreign
function incorporates the Oracle Call Interface. This interface allows
you to write a subprogram that contains calls to Oracle databases. A
foreign function that incorporates only the OCI (and not the Oracle
Precompiler interface) cannot access Oracle Forms variables and items.
For more information on the OCI, refer to the Programmer’s Guide to the
Oracle Call Interface.

Non–Oracle Foreign Functions A non–Oracle foreign function does
not incorporate either the Oracle Precompiler interface or the OCI. For
example, a non–Oracle foreign function might be written entirely in the
C language. A non–Oracle foreign function cannot access Oracle
databases, or Oracle Forms variables and items.

3 – 5User Exit Interface to Foreign Functions

Oracle Precompiler Statements

All Oracle Precompiler foreign functions can use host language
statements to perform procedural operations. Precompiler foreign
functions can also use the following types of statements to perform
additional functions such as accessing the database and manipulating
Oracle Forms variables and items.

Statement Use

EXEC SQL Performs SQL commands.

EXEC TOOLS GET Retrieves values from Oracle Forms
to a foreign function.

EXEC TOOLS SET Sends values from a foreign function
to Oracle Forms.

EXEC TOOLS MESSAGE Passes a message from a foreign
function to display in Oracle Forms.

EXEC TOOLS GET CONTEXT Obtains context information
previously saved in a foreign
function.

EXEC TOOLS SET CONTEXT Saves context information from one
foreign function for use in subsequent
foreign function invocations.

EXEC ORACLE Executes Oracle Precompiler
options.

An Oracle Precompiler foreign function source file includes host
programming language statements and Oracle Precompiler statements
with embedded SQL statements. Precompiling an Oracle Precompiler
foreign function replaces the embedded SQL statements with
equivalent host programming language statements. After
precompiling, you have a source file that you can compile with a host
language compiler. For more information on a specific precompiler,
refer to the appropriate precompiler documentation for your
environment.

Syntax:

Restrictions:

3 – 6 Forms Advanced Techniques

EXEC SQL Statement

An EXEC SQL statement is a SQL command prefixed with ”EXEC
SQL.” EXEC SQL statements allow you to perform any SQL command
in an Oracle Precompiler foreign function. Use EXEC SQL statements
to select or manipulate data in the database from a foreign function.

EXEC SQL sql_statement ;

where sql_statement is any valid Oracle SQL statement, except for the
restricted commands noted in this section.

You do not need to perform an explicit CONNECT in an Oracle
Precompiler foreign function because Oracle Forms establishes the
connection automatically. However, Oracle Server does support
concurrent connects. For more information, refer to the Programmer’s
Guide to the Oracle Precompilers.

You adhere to the following restrictions when you use SQL commands
in an Oracle Precompiler foreign function:

• Do not issue a SQL COMMIT or ROLLBACK statement from
within a foreign function if there are changes in a form that have
not been posted to the database when the foreign function is
called.

• Do not issue any command that would implicitly cause a
database commit, such as a DDL command within a foreign
function, if there are changes in a form that have not been posted
to the database when the foreign function is called.

Syntax:

Notes:

Restrictions:

Example:

3 – 7User Exit Interface to Foreign Functions

EXEC TOOLS GET Statement

An EXEC TOOLS GET statement retrieves a value from Oracle Forms
into an Oracle Precompiler foreign function. Specifically, it places the
value of an Oracle Forms item or variable into a host language variable.
Once the foreign function retrieves a value from Oracle Forms, the
foreign function can use that value for calculation, manipulation, or
updating.

EXEC TOOLS GET form_variable_1 [, form_variable_2 , ...]
 INTO :host_variable_1[, : host_variable_2 , ...];

where:

Specifies the name of the Oracle Forms item or
variable from which you are reading a value.

Specifies the name of the host language variable
into which you are reading a value.

The form_variable can be a reference to any of the following items:

• a fully–qualified item (block.item)

• a form parameter

• an Oracle Forms system variable

• an Oracle Forms global variable

• a host language variable (prefixed with a colon) whose value is
any of the above choices

Refer to the Programmer’s Guide to the Oracle Precompilers for any
restrictions on host language variables.

It is not possible to get or set values directly into a record group from a
foreign function.

/*
** Example: Read an item name from a block (empblock.empname)

*/

EXEC SQL BEGIN DECLARE SECTION;

char itm_buff[255]; /* buffer for item value */

VARCHAR itm_name[255]; /* Forms item name */

EXEC SQL END DECLARE SECTION;

strcpy(itm_name.arr,”EMBLOCK.EMPNAME”);

itm_name.len=strlen(”EMBLOCK.EMPNAME”);

EXEC TOOLS GET :itm_name

INTO :itm_buff;

form_variable_n

host_variable_n

Syntax:

Notes:

3 – 8 Forms Advanced Techniques

EXEC TOOLS SET Statement

An EXEC TOOLS SET statement sends a value from an Oracle
Precompiler foreign function to Oracle Forms. Specifically, it places the
value of a constant or the value of a host language variable into an
Oracle Forms item or variable.

Any value that an EXEC TOOLS SET statement passes to a form item
displays after the foreign function returns processing control to the
form that called the foreign function (providing, of course, that the item
has the Displayed item property set to True).

EXEC TOOLS SET form_variable [, ...]
 VALUES ({:host_variable | constant }[, ...]);

where:

Specifies the name of the Oracle Forms item or
variable into which you are reading a value.

Specifies the name of the host language variable
from which you are reading a value.

Specifies the constant that you are reading. Do not
precede a constant with a colon.

The form_variable can be a reference to any of the following items:

• a fully–qualified item (block.item)

• a form parameter

• an Oracle Forms system variable

• an Oracle Forms global variable

• a host language variable (prefixed with a colon) whose value is
any of the above choices

Refer to the Programmer’s Guide to the Oracle Precompilers for any
restrictions on host language variables.

Represent host variables and constants in standard SQL format:

Value Result

:holder1 Inserts the value of the host variable, holder1
(preceded by a semi–colon).

’Summit Sporting Goods’ Inserts the constant string value, Summit
Sporting Goods (enclosed in single quotes).

413 Inserts the constant numeric value, 413
(no quotes for numeric values).

form_variable

host_variable

constant

Example:

Syntax:

Example:

3 – 9User Exit Interface to Foreign Functions

/*
** Example: Write ’SMITH’ into emp.ename

*/

EXEC SQL BEGIN DECLARE SECTION;

char itm_buff[255]; /*buffer for item value */

VARCHAR itm_name[255]; /* Forms item name */

EXEC SQL END DECLARE SECTION;

strcpy(itm_name.arr,”EMP.ENAME”);

itm_name.len = strlen(”EMP.ENAME”);

strcpy(itm_buff,”SMITH”);

EXEC TOOLS SET :itm_name

VALUES (:itm_buff);

EXEC TOOLS MESSAGE Statement

An EXEC TOOLS MESSAGE statement displays a message on the
Oracle Forms message line.

EXEC TOOLS MESSAGE (message [severity]);

where:

Specifies the message you are passing to Oracle
Forms. The message can be a quoted string or a
host language variable.

Specifies the severity level of the message you are
passing to Oracle Forms.

/*
** Example: Error message for text item

*/

EXEC TOOLS MESSAGE

 ’Incorrect argument: Expecting item name. Please re–enter.’;

message

severity

Syntax:

Notes:

Example:

3 – 10 Forms Advanced Techniques

EXEC TOOLS GET CONTEXT Statement

An EXEC TOOLS GET CONTEXT statement obtains context
information (a pointer name) previously saved using EXEC TOOLS
SET CONTEXT and reads it into a foreign function.

EXEC TOOLS GET CONTEXT context_name [, ...]
 INTO :host_variable_1[, : host_variable_2 , ...];

where:

Specifies the name of the context you are saving.

Specifies the name of the host language variable
into which you are reading the context value.

The context_name can be a reference to one of the following items:

• a host language variable (prefixed with a colon)

• a constant

/*
** Example: Get previously saved context information

*/

EXEC SQL BEGIN DECLARE SECTION;

char *pctx;

EXEC SQL END DECLARE SECTION;

EXEC TOOLS GET CONTEXT appl_1 INTO :pctx;

context_name

host_variable_n

Syntax:

Notes:

Example:

3 – 11User Exit Interface to Foreign Functions

EXEC TOOLS SET CONTEXT Statement

An EXEC TOOLS SET CONTEXT statement saves context information
from one foreign function for use in subsequent foreign function
invocations. Use EXEC TOOLS SET CONTEXT instead of creating a
global variable to hold information. EXEC TOOLS SET CONTEXT
allows you to assign a meaningful text name to a pointer representing a
location in memory. You can retrieve the pointer using EXEC TOOLS
GET CONTEXT.

EXEC TOOLS SET CONTEXT host_name [, ...]
 BY context_name [, ...];

where:

Specifies the host language variable containing the
information to be saved.

Specifies the name of the saved context.

The context_name can be a reference to one of the following items:

• a host language variable (prefixed with a colon)

• a constant

/*
** Example: Save context information for later use

*/

EXEC SQL BEGIN DECLARE SECTION;

char my_context[20];

EXEC SQL END DECLARE SECTION;

strcpy(my_context, ”context_1”);

EXEC TOOLS SET CONTEXT :my_context BY appl_1;

EXEC ORACLE Statement

An EXEC ORACLE statement is a statement that is not standard SQL
and is used to execute Oracle Precompiler options. For more
information, refer to the Programmer’s Guide to the Oracle Precompilers.

host_name

context_name

3 – 12 Forms Advanced Techniques

Creating a User Exit Interface to Foreign Functions

Creating a user exit interface to a foreign function involves the
following:

• Creating an IAPXTB control structure that registers each user
exit interface

• Integrating a user exit interface with Oracle Forms

Creating an IAPXTB Control Structure

The IAPXTB control structure is a data structure that contains
information regarding all foreign functions that can be invoked from a
user exit interface. The IAPXTB control structure designates the entry
points necessary for linking your foreign functions to Oracle Forms.
The following table describes each column in the IAPXTB control
structure:

Column Content

NAME This column specifies a user exit name for a foreign function
that can be invoked from a user exit interface. (This is not
necessarily the name of the file that contains the foreign
function or the name of the foreign function that is called.)
Note that some host languages are case sensitive.

FUNCTION This column specifies the name of the foreign function.

TYPE This column specifies the language in which the foreign
function is written. Valid values include:
XITCC for C
XITCOB for COBOL,
XITFOR for FORTRAN
XITPLI for PL/I
XITPAS for PASCAL
XITAda for Ada

You must enter one entry in the IAPXTB control structure for every
foreign function that can be invoked from a user exit interface. This is
true for all foreign functions that can be invoked from a user exit
interface, whether a foreign function is in a file that is precompiled and
compiled by itself, or precompiled and compiled with several other
foreign functions. You should maintain all foreign functions that can be
invoked from a user exit interface for a production system in one
IAPXTB control structure. You should keep test versions of your
foreign functions in a separate IAPXTB control structure.

3 – 13User Exit Interface to Foreign Functions

To create the IAPXTB control structure:

1. Define the IAPXTB data structure.

Make sure you define the data structure with three fields
representing the name of the user exit interface, the name of the
foreign function, and the language used to develop the foreign
function.

2. Enter the data for each foreign function.

3. Compile the IAPXTB source file to generate an object code file.
Retain the IAPXTB object code file for integrating the user exit
interface with Oracle Forms.

Specific information about creating the IAPXTB control structure in
Microsoft Windows is available in the section “A User Exit Interface to
Foreign Functions on Microsoft Windows.” For information about
creating the IAPXTB control structure in other environments, refer to
the Oracle Forms documentation for your operating system.

Integrating a User Exit Interface with Oracle Forms

Integration of a user exit interface to Oracle Forms depends on the
operating system on which you are working and the language in which
you choose to write the foreign function.

On Microsoft Windows, you create a dynamic link library with foreign
function object code files and IAPXTB control structure object code
files. When a foreign function is invoked from a user exit interface, a
dynamic link library loads into memory. For more information on
integration of foreign functions in Microsoft Windows, refer to the
section “A User Exit Interface to Foreign Functions on Microsoft
Windows.”

For other environments, you must rebuild the Oracle Forms Runform
executable by linking the object code files from the foreign function and
IAPXTB control structure to Oracle Forms object code files. For more
information on linking object code files and generating a Oracle Forms
Runform executable, refer to the Oracle Forms documentation for your
operating system.

Syntax:

Parameters:

Restrictions:

3 – 14 Forms Advanced Techniques

To integrate a user exit interface with Oracle Forms:

1. Identify the foreign function object code file.

2. Identify the IAPXTB control structure object code file.

3. Link the foreign function object code file and the IAPXTB control
structure object code file with either a dynamic link library or
Oracle Forms Runform.

Invoking a Foreign Function from a User Exit Interface

After creating a user exit interface to a foreign function, you can invoke
the foreign function using a user exit interface from Oracle Forms. To
invoke a foreign function from a user exit interface, you call the
USER_EXIT built–in subprogram from a trigger or from a user–named
subprogram.

When you invoke a foreign function from a user exit interface, Oracle
Forms temporarily passes processing control to the foreign function.
When execution of the foreign function is complete, Oracle Forms
regains processing control.

USER_EXIT(user_exit_string);
USER_EXIT(user_exit_string, error_string);

The USER_EXIT built–in calls the foreign function named in the
user_exit_string.

Specifies a user exit name for a foreign function
that you want to call from a user exit interface,
including any parameters. Maximum length of
the user_exit_string is 255 characters.

Specifies a user–defined error message that
Oracle Forms displays if the call to the foreign
function fails. Maximum length of the
error_string is 255 characters.

When you specify the user exit name that represents a foreign function
(in the user_exit_string of the USER_EXIT built–in subprogram) that
name must follow the rules of your operating system and host
language. Be aware that these rules might include case sensitivity. You
should also note that only one foreign function can be invoked per
USER_EXIT built–in call.

user_exit_string

error_string

3 – 15User Exit Interface to Foreign Functions

Passing Parameter Values to a Foreign Function from Oracle Forms

You can pass parameters to a foreign function that is invoked from a
user exit interface. You can pass parameter values by defining
user_exit_string and error_string in the USER_EXIT built–in
subprogram.

When you define user_exit_string and error_string in Oracle Forms, the
foreign function recognizes the values as corresponding to a command
line value and an error message value. For instance, Oracle Forms
treats the value of user_exit_string as a string variable. The value of
user_exit_string is the command line to a foreign function.

The following are foreign function parameters and their corresponding
Oracle Forms definitions for each foreign function invoked from a user
exit interface:

Foreign Function Parameter Oracle Forms Definition

Command Line user_exit_string.

Command Line Length length (in characters) of user_exit_string.

Error Message error_string.

Error Message Length length (in characters) of error_string.

In–Query a boolean value that reflects whether the for-
eign function was invoked from a user exit in-
terface when the form was in Enter Query
mode.

Although Oracle Forms automatically invokes the foreign function
from the user_exit_string, Oracle Forms does not automatically parse
the user_exit_string. It is the responsibility of the foreign function to
parse the user_exit_string.

You can pass any number of parameters to a foreign function from the
user_exit_string of the USER_EXIT built–in. Use this feature to pass
information such as item names. For example, to pass two parameters,
PARAM1 and PARAM2, to the CALCULATE_VALUES foreign
function, you specify the following statement:

User_Exit(’CALCULATE_VALUES PARAM1 PARAM2’);

3 – 16 Forms Advanced Techniques

Returning a Value from a Foreign Function to Oracle Forms

When the execution of the Oracle Forms USER_EXIT built–in
subprogram is complete, an integer value is returned to Oracle Forms.
This integer value indicates whether the USER_EXIT built–in
subprogram executed with success, failure, or a fatal error. (For
example, if you are creating a foreign function in C, Oracle Forms
provides the constants in a ”.h” file.)

Error variables in Oracle Forms—FORM_FAILURE, FORM_FATAL,
and FORM_SUCCESS—are set according to the value that is returned
from the USER_EXIT built–in subprogram. You can query the error
variables to determine the success or failure of the execution of the
USER_EXIT built–in subprogram just as you would for any built–in
subprogram. The trigger that calls the USER_EXIT built–in
subprogram determines how to handle the return condition.

For example, you might want to check the value of FORM_SUCCESS
after executing a foreign function from a user exit interface:

User_Exit(’my_exit’);

IF NOT Form_Success THEN

 handle the error

END IF;

A User Exit Interface to Foreign Functions on Microsoft Windows

This section describes aspects of Oracle Forms that are specific to its
use in Microsoft Windows. For information about other environments,
refer to the Oracle Forms documentation for your operating system.

In Microsoft Windows, a foreign function that can be invoked from a
user exit interface is contained in a dynamic link library(DLL). A DLL
is a library that loads into memory only when the contained code is
invoked, and a DLL can be shared by multiple applications. Before
proceeding, you should be familiar with the procedure for building
DLLs, as described in your compiler manual.

Note: Some C runtime functions are not available in .DLL files. For
more information, refer to your compiler documentation.

3 – 17User Exit Interface to Foreign Functions

To create an Oracle Precompiler foreign function that can be invoked
from a user exit interface on Microsoft Windows:

1. Write an Oracle Precompiler foreign function using the Oracle
precompiler statements to embed SQL commands in your source
code.

2. Precompile the foreign function source code with an Oracle
precompiler.

3. Compile the output from the Oracle precompiler to generate a
foreign function object code file. Be sure to specify the large
memory model on your compiler.

4. Create an IAPXTB control structure and compile the source code to
generate an IAPXTB object code file.

5. Build a DLL with the foreign function and IAPXTB control
structure object code files.

6. Make sure you include the name of the DLL in the
FORMS45_USEREXITS variable of the ORACLE.INI file, or rename
the DLL to F45XTB.DLL. If you rename the DLL to F45XTB.DLL,
replace the existing F45XTB.DLL in the \ORAWIN\BIN directory
with the new F45XTB.DLL.

7. Invoke the foreign function from a user exit interface in Oracle
Forms.

Microsoft Windows User Exit Interface Files

During the installation of Oracle Forms for Windows, a group of files
related to the user exit interface (with the exception of F45XTB.DLL)
are copied to the \ORAWIN\FORMS45\USEREXIT directory. You
may not require all of the files contained in this directory. All foreign
functions that can be invoked from a user exit interface from Oracle
Forms for Windows must be contained in a DLL.

is the default file containing foreign functions that
can be invoked from a user exit interface. This file
is a DLL that ships with Oracle Forms, and does
not initially contain user–defined foreign functions.
This file is placed in the \ORAWIN\BIN directory
during installation. When you create new foreign
functions, replace the existing F45XTB.DLL file
with a new F45XTB.DLL.

To assist you in creating the IAPXTB control structure, Oracle Forms
provides you with two IAPXTB control structure source files,

F45XTB.DLL

3 – 18 Forms Advanced Techniques

UE_XTB.C and UE_XTBN.C. Each file serves as a template for creating
an IAPXTB control structure. Modify a IAPXTB control structure
source file to include the foreign functions you define. Include the
appropriate file in your project. You only need one of the two source
files to create the IAPXTB control structure.

is a file that contains an example of an entry for the
IAPXTB control structure. Modify this file and add
your foreign function entries. This is the file that is
in the UE_SAMP.MAK project file.

is a file that contains an empty IAPXTB control
structure. Add your foreign function entries to
create an IAPXTB control structure. This is the file
that is in the UE_XTBN.MAK project file.

The following files are project files that contain all the required files to
create a DLL containing foreign functions that you can invoke from a
user exit interface in Oracle Forms.

is a project file that includes the IAPXTB control
structure from the UE_XTB.C file. Building this
project generates UE_SAMP.DLL. You can rename
the DLL from UE_SAMP.DLL to F45XTB.DLL and
replace the existing F45XTB.DLL in the
\ORAWIN\BIN directory, or you can add
UE_SAMP.DLL to the list of DLLs defined by the
FORMS45_USEREXITS parameter in the
ORACLE.INI file.

is a project file that includes the IAPXTB control
structure from the UE_XTBN.C file. Building this
project generates UE_XTBN.DLL. This is the
project file that is used to generate the initial
F45XTB.DLL that resides in the \ORAWIN\BIN
directory. You can rename the DLL from
UE_XTBN.DLL to F45XTB.DLL and replace the
existing F45XTB.DLL in the \ORAWIN\BIN
directory, or you can add UE_XTBN.DLL to the list
of DLLs defined by the FORMS45_USEREXITS
parameter in the ORACLE.INI file.

UE_XTB.C

UE_XTBN.C

UE_SAMP.MAK

UE_XTBN.MAK

3 – 19User Exit Interface to Foreign Functions

In addition to your foreign function object code files and an IAPXTB
control structure object code file, you need the following files in your
project file to generate a user exit interface DLL (These files are
included in UE_SAMP.MAK and UE_XTBN.MAK):

contains definitions you need to build your own
DLL.

is the Dynamic Link Library Windows Entry Point
.OBJ file you need to build your own DLL. (You
may replace OSSWEP.OBJ with an .OBJ file of your
own.)

is an .OBJ file that you link to your own .OBJ files.

Compiling Microsoft Windows Foreign Functions

When compiling your foreign functions, be sure to specify the large
memory model. Refer to your Microsoft Windows compiler
documentation for additional information, such as restrictions on
building a Microsoft Windows DLL, and the use of #define statements.
(Your foreign function code may need to include the UE.H file to access
typedefs and #define statements.)

Creating the IAPXTB Control Structure for Microsoft Windows

You can create the IAPXTB control structure by using the UE_XTB.C or
the UE_XTBN.C file as a template. Alternatively, you can create your
own IAPXTB control structure in a self–defined file.

Note: In Microsoft Windows, an IAPXTB control structure is required
for building each DLL that contains foreign functions that can be
invoked from a user exit interface. You should only include entries in
the IAPXTB control structure for corresponding foreign functions that
are contained in a DLL.

The following is an excerpt from a slightly modified UE_XTB.C file:

extern exitr iapxtb[] = { /* Holds exit routine pointers */

“UE_Name”, UE_Funct, XITCC,

“USEREXECSQL”, uxsql, XITCC,

(char *)0, 0, 0 /* zero entry marks the end */

} /* end iapxtb */

F45XTB.DEF

OSSWEP.OBJ

UEZ.OBJ

3 – 20 Forms Advanced Techniques

The file includes the user exit name UE_Name. In this example, the
following line was added to the original UE_XTB.C file:

“UE_Name”, UE_Funct, XITCC,

is the user exit name for use by the USER_EXIT
built–in subprogram to invoke the foreign function
from Oracle Forms.

is the name of the foreign function that temporarily
takes over processing control from Oracle Forms.

specifies the C programming language that is used
to develop the foreign function.

Building a Microsoft Windows Dynamic Link Library

Two project files, UE_SAMP.MAK and UE_XTBN.MAK, are guides to
help you create a DLL containing foreign functions that can be invoked
from a user exit interface.

You also have the option of defining your own project file. When
creating your own project file, remember to include a IAPXTB control
structure object code file, the foreign function object code files, and the
required files for integrating foreign functions that can be invoked from
a user exit interface in Oracle Forms.

One of the required files for integrating foreign functions with Oracle
Forms is the F45XTB.DEF file. Use the F45XTB.DEF file to export
foreign functions. Some export statements for Oracle Forms already
exist. Do not modify the existing export statements, because the
functions are used by Oracle Forms to access user exit interfaces.

The UE_SAMP.MAK project file is used here as an example. In
addition to the object code files containing your foreign functions,
UE_SAMP.MAK includes the following files:

\orawin\forms45\userexit\uez.obj
\orawin\forms45\userexit\osswep.obj
\orawin\forms45\userexit\f45xtb.def
\orawin\forms45\userexit\ue_xtb.c

You must also link the following files:

LDLLCEW.LIB
LIBW.LIB
OLDNAMES
\orawin\forms45\userexit\F45R.LIB

UE_Name

UE_Funct

XITCC

3 – 21User Exit Interface to Foreign Functions

If you are creating an Oracle Precompiler foreign function, you must
link the following libraries:

\orawin\pro20\userexit\sql16win.lib
\orawin\pro20\userexit\sqx16win.lib

You create UE_SAMP.DLL after building the UE_SAMP.MAK project
file. You can rename UE_SAMP.DLL to F45XTB.DLL, make a backup
copy of F45XTB.DLL located in \ORAWIN\BIN, and replace the
existing F45XTB.DLL with the new F45XTB.DLL. Alternatively, you
can add UE_SAMP.DLL to the list of DLLs defined by the
FORMS45_USEREXITS parameter in the ORACLE.INI file.

Defining Foreign Functions in Multiple Dynamic Link Libraries

Foreign functions developed for use in Oracle Forms for Windows are
contained in DLLs. Oracle Forms establishes a single DLL,
F45XTB.DLL, for containing foreign functions. F45XTB.DLL is the
default DLL for containing foreign functions. Multiple foreign
functions can be contained in a single DLL.

Using a single DLL that contains all foreign functions can cause
conflicts, especially when two programs try to access the same DLL.
To alleviate dynamic library conflicts, Oracle Forms supports multiple
user exit interface DLLs; foreign functions can be contained in multiple
DLLs without restrictions on the name of the DLL.

FORMS45_USEREXITS parameter The FORMS45_USEREXITS
parameter in the ORACLE.INI file allows you to define multiple DLLs
to contain foreign functions that can be invoked from a user exit
interface. The FORMS45_USEREXITS parameter includes a semicolon
delimited list of user exit interface DLLs.

This is an example of defining multiple user exit interface DLLs

FORMS45_USEREXITS = C:\mathlib\add.dll;C:\mathlib\mult.dll;

A DLL loads into memory when any one of the foreign functions it
contains is invoked from the user exit interface. Although the
FORMS45_USEREXITS parameter can list many DLLs that each
contain multiple user exit interface foreign functions, only one such
DLL is in memory at any time.

Oracle Forms determines the foreign function to invoke from a user
exit interface using the following criteria:

• If the FORMS45_USEREXITS parameter does not exist in the
ORACLE.INI file, foreign functions must be contained in a single

3 – 22 Forms Advanced Techniques

user exit DLL named F45XTB.DLL and located in the
\ORAWIN\BIN directory.

• If the FORMS45_USEREXITS parameter exists in the
ORACLE.INI file and there are multiple user exit interface DLLs
define, the first occurrence of the foreign function in the list of
DLLs is invoked.

• If there are multiple user exit interface DLLs that contain
non–unique foreign function names, the non–unique function
name that is invoked is the first occurrence of function that
follows the content in the user exit interface cache memory.

NOTE: To avoid calling an unexpected foreign function, you should
not use the same foreign function name more than once in any of your
user exit interface DLLs. An example of a non–unique function name
is when two different functions have the same name, but are contained
in different user exit interface DLLs.

User Exit Interface Cache Memory Oracle Forms deals with
non–unique function names by maintaining a user exit interface cache
memory. Exiting a form clears the user exit interface cache memory,
otherwise the user exit interface cache memory retains the last called
foreign function in memory until you call another foreign function.

Invoking a foreign function that has a non–unique function name
depends on what is in the user exit interface cache memory. The first
occurrence of a foreign function with a non–unique function name that
follows the foreign function in the user exit interface cache memory is
invoked.

If the user exit interface cache memory is empty, the first occurrence of
a function with the non–unique function name in the list of DLLs is
invoked. Because the cache memory is not cleared until a you exit a
form, subsequent calls to a non–unique function name may result in an
unexpected foreign function call. For instance, you may accidentally
call a function that follows a function with a unique name as opposed
to calling a function that appears earlier in the sequence of user exit
interface DLLs. Although in many cases, the user exit interface cache
memory correctly identifies foreign functions with non–unique names,
you should use unique foreign function names in the list of DLLs that
are members of the FORMS45_USEREXITS variable whenever possible.

3 – 23User Exit Interface to Foreign Functions

An Example of a User Exit Interface in Microsoft Windows

The following is an example of creating and invoking a foreign function
from a user exit interface. This example uses the UE_SAMP.MAK
project file.

1. Write a foreign function using Pro*C and Oracle precompiler
statements to access the database.

This is a precompiler foreign function in a file named UEXIT.PC.
The foreign function adds an ID column to the EMP table.

/* UEXIT.PC file */

#ifndef UE

#include “ue.h”

#endif

#ifndef _WINDLL

#define SQLCA_STORAGE_CLASS extern

#endif

EXEC SQL INCLUDE sqlca.h

void AddColumn() {

EXEC SQL alter table EMP add ID varchar(9);

}

2. Precompile the foreign function with the Pro*C precompiler.

The input to the Pro*C precompiler is the file UEXIT.PC. The
output from the Pro*C precompiler is the file UEXIT.C. You should
also create a header file to prototype your foreign functions. In this
example, a UEXIT.H file is created to declare the AddColumn
function.

3. Create the IAPXTB control structure.

Modify the file UE_XTB.C file by including the UEXIT.H file and
adding the user exit name, foreign function name, and language
type. Follow the example in the UE_XTB.C file. In this case, the
following entry is added to the file:

Add_ID_Column, AddColumn, XITCC

4. Modify any required foreign function integration files.

Modify the F45XTB.DEF file by adding export statements to
include the AddColumn foreign function. Follow the examples in
the F45XTB.DEF file.

3 – 24 Forms Advanced Techniques

5. Build a DLL for use with Oracle Forms Runform.

With the exception of UEXIT.C, the following files should already
be included in the UE_SAMP.MAK project file:

c:\orawin\forms\userexit\uez.obj

c:\orawin\forms\userexit\osswep.obj

c:\orawin\forms\userexit\f45xtb.def

c:\orawin\forms\userexit\ue_xtb.c

c:\orawin\forms\userexit\uexit.c

The UE_SAMP.MAK project is set up to link the following files:

LDLLCEW.LIB

LIBW.LIB

OLDNAMES

c:\orawin\forms45\userexit\f45r.LIB

c:\orawin\pro20\userexit\sql16win.lib

c:\orawin\pro20\userexit\sqx16win.lib

After building the UE_SAMP.MAK project, the result is a DLL
named UE_SAMP.DLL. Add the UE_SAMP.DLL entry to the list of
DLLs defined by the FORMS45_USEREXITS parameter in the
ORACLE.INI file.

Alternatively, you can rename UE_SAMP.DLL to F45XTB.DLL,
backup the F45XTB.DLL in the c:\orawin\bin directory, and copy
the new F45XTB.DLL to the c:\orawin\bin directory.

6. Invoke the foreign function from a user exit interface in Oracle
Forms.

In this case, a When–Button–Pressed Trigger calls the foreign
function from a user exit interface. The following statement
demonstrates how to invoke the AddColumn foreign function by
specifying the user exit name Add_ID_Column in the USER_EXIT
built–in subprogram:

/* Trigger: When–Button–Pressed */

USER_EXIT(’Add_ID_Column’);

3 – 25User Exit Interface to Foreign Functions

Accessing the Microsoft Windows SDK From a User Exit Interface

You can invoke Microsoft Windows SDK functions from a user exit
interface. Invoking Microsoft Windows SDK functions is similar to
invoking user–defined foreign functions from a user exit interface on
Microsoft Windows. Instead of including the object code files of your
user–defined foreign function when building a dynamic link library,
you must include the source files of the Microsoft Windows SDK
function.

Parameter values for Microsoft Windows SDK functions can be passed
to or received from Oracle Forms like other foreign functions. For
Microsoft Windows SDK functions that require a window handle
parameter, you can obtain the window handle from Oracle Forms using
the GET_ITEM_PROPERTY function to examine the Window_Handle
property. A window handle is a unique internal character constant that
is used to refer to objects. For information on the Window_Handle
property, refer to the Oracle Forms Reference Manual, Vol. 2.

There are many reasons for accessing the Microsoft Windows SDK. For
example, by obtaining a window handle from Oracle Forms, you can
invoke Microsoft Windows SDK functions to externally modify the
properties of objects in your Oracle Forms applications. The following
is an example of calling the Microsoft Windows SDK function
GetWindowRect from an Oracle Forms trigger or user–defined
subprogram:

:block1.item_handle := get_item_property(’block1.item1’,
Window_Handle);

USER_EXIT(GetWinRec || :block1.item_handle,’error_message’);

3 – 26 Forms Advanced Techniques

C H A P T E R

4

O

4 – 1Connecting to Non–ORACLE Data Sources

Connecting to
Non–ORACLE Data
Sources

racle Forms applications can run against non–ORACLE data
sources. This chapter describes your options for developing such
applications, and includes the following topics:

• About Connecting to Non–ORACLE Data Sources 4 – 2

• Connecting with Open Gateway 4 – 2

• Using Transactional Triggers 4 – 8

• About Transaction Processing 4 – 16

4 – 2 Forms Advanced Techniques

About Connecting to Non–ORACLE Data Sources

There are three ways to create applications that run against
non–ORACLE data sources. The first is to use the Open Gateway
products available from Oracle to make the connection. There are
Open Gateway products available for many third–party databases.
Open Gateway automatically manages the interaction between Oracle
Forms and your non–ORACLE data source. For more information on
Open Gateway products, contact Oracle Corporation.

Another way to connect to non–ORACLE data sources is through
ODBC, using Oracle’s Open Client Adapter driver. For more
information, refer to Chapter 14, “Oracle Open Client Adapter for
ODBC.”

If no Open Gateway or Open Client Adapter drivers exist for your data
source, or if your application has special requirements, you can still
connect to virtually any data source by writing the appropriate set of
transactional triggers in your form.

The set of transactional triggers available in Oracle Forms, together
with user exits or PL/SQL calls to foreign functions, allows you to
replace Oracle Forms default transaction processing with functionality
appropriate to your data source. Using transactional triggers, you can
develop forms that

• run against a non–ORACLE data source

• run against ORACLE or a non–ORACLE data source

• include some blocks that are based on ORACLE tables and other
blocks that access a non–ORACLE data source

• use Open Gateway to connect to one non–ORACLE data source
and use transactional triggers to connect to another

Connecting with Open Gateway

When you connect to a non–ORACLE data source with an Open
Gateway product, there are four transaction processing options in
Oracle Forms that you should be aware of. These options include two
block properties and two form module properties:

• Key Mode block property

• Locking Mode block property

• Cursor Mode form module property

• Savepoint Mode form module property

Examples:

4 – 3Connecting to Non–ORACLE Data Sources

You can set these properties to specify how Oracle Forms should
interact with your non–ORACLE data source. The specific settings you
will use for these properties will depend on the capabilities and
limitations of the data source to which you are connecting.

Key Mode Block Property

The Key Mode block property determines how Oracle Forms uniquely
identifies rows in the database. ORACLE uses unique ROWID values
to identify each row. Non–ORACLE databases do not include the
ROWID construct, but instead rely solely on unique primary key values
to identify unique rows. If you are creating a form to run against a
non–ORACLE data source, you must define primary keys, and set the
Key Mode block property accordingly.

Value Description

Unique (the default) The default setting. Instructs Oracle Forms to use
ROWID constructs to identify unique rows in an
ORACLE database.

Updateable Specifies that Oracle Forms should issue
UPDATE statements that include primary key
values. Use this setting if your database allows
primary key columns to be updated and you
intend for the application to update primary key
values.

Non–Updateable Specifies that Oracle Forms should not include
primary key columns in any UPDATE
statements. Use this setting if your database does
not allow primary key values to be updated.

Note: Some Open Gateway products use pseudo ROWIDs that allow
you to run your form in the default Unique_Key mode against that
particular data source.

Note: When the Key Mode property is set to one of the primary key
modes, you must identify the primary key items in your form by
setting the Primary Key item property True for at least one item in the
block.

The following examples illustrate how the Key Mode property affects
transaction processing.

Consider a DEPT table with columns named DEPTNO, DNAME, and
LOC. The DEPTNO column is the primary key.

Example 1: Unique
Key

Example 2:
Updateable Key

4 – 4 Forms Advanced Techniques

The following figure shows how a row in the DEPT table would be
stored in an ORACLE database. Note the ROWID pseudo–column that
ORACLE uses to identify unique rows.

ROWID DEPTNO DNAME LOC

000012C1.0001.0001 30 SALES CHICAGO

The statement issued for an unqualified query on the preceding table
from within Oracle Forms appears as follows:

SELECT rowid, deptno, dname, loc

FROM dept;

Now assume that the operator fetches the example row into the DEPT
block in the form, changes the DNAME value from ’SALES’ to
’CONSULTING,’ and then commits the transaction. The following
sections show how Oracle Forms manages the update differently,
depending on the setting of the Key Mode property.

When the Key Mode property is set to Unique (the default setting)
Oracle Forms issues the following SQL statements to reserve the record
for update, and then update the record:

SELECT rowid, deptno, dname, loc

FROM dept

WHERE rowid = ’000012C1.0001.0001’

AND deptno = 30 AND dname = ’Sales’ AND loc = ’Chicago’

FOR UPDATE OF deptno, dname, loc

NOWAIT;

UPDATE dept

SET deptno = 30, dname = ’Consulting’, loc = ’Chicago’

WHERE rowid = ’000012C1.0001.0001’;

When the Key Mode property is set to Updateable, Oracle Forms issues
the following statements to reserve the record for update, and then
update the record:

SELECT deptno, dname, loc

FROM dept;

SELECT deptno, dname, loc

FROM dept

WHERE deptno = 30

FOR UPDATE OF deptno, dname, loc;

UPDATE dept

SET deptno = 30, dname = ’Consulting’, loc = ’Chicago’

WHERE deptno = 30;

Notice that the ROWID construct is not included in these statements.

Example 3:
Non–Updateable Key

4 – 5Connecting to Non–ORACLE Data Sources

When the Key Mode property is set to Non–Updateable, Oracle Forms
issues the following statements to reserve the record for update, and
then update the record:

SELECT deptno, dname, loc

FROM dept;

SELECT deptno, dname, loc

FROM dept

WHERE deptno = 30

FOR UPDATE OF dname, loc;

UPDATE dept

SET dname = ’Consulting’, loc = ’Chicago’

WHERE deptno = 30;

In this example, the primary key DEPTNO column is not included in
the UPDATE statement issued by Oracle Forms. When you use
Non–Updateable Key mode, it is usually best to set the Update
Allowed item property to False for non–updateable primary key items.
This setting gives immediate feedback to operators that the primary
key value cannot be edited in a queried record.

Locking Mode Block Property

Specifies when Oracle Forms should attempt to obtain database locks
on rows that correspond to queried records in the form.

The following table describes the allowable settings for the Locking
Mode property.

Value Description

IMMEDIATE
(the default)

Specifies that Oracle Forms should attempt to
lock the corresponding row immediately after
an operator or the application modifies an item
value in a queried record. With this setting,
Oracle Forms locks the record as soon as the
operator presses a key to enter or edit the val-
ue in a text item.

DELAYED Specifies that Oracle Forms should wait to lock
the corresponding row in the database until
the transaction is about to be committed. With
this setting, the record is locked only while the
transaction is being posted to the database, not
while the operator is editing the record.

Note: It is possible to implement an optimistic locking scheme by
using the On–Lock trigger to suppress locking as necessary.

4 – 6 Forms Advanced Techniques

ORACLE Version 6 and the Oracle7 Server support row–level locking
to maximize concurrency. Non–ORACLE databases do not always
support row–level locking, but rather, support page or table–level
locking. Instead of locking only the row that has been modified for
update, these databases lock the entire page or table.

When a form is running against a database that supports page or
table–level locking, the effect of locking on resource contention is
potentially more severe because more records are affected.

Between immediate locking and delayed locking there is a potential
trade–off between low concurrency and lost updates. Using immediate
locking can result in low concurrency, while delaying locking can result
in lost updates. An update can be lost when another user locks and
updates the same row before the first operator finishes updating and
committing a record. When this happens, Oracle Forms issues a
message that the record has been modified by another user. The
operator must then re–query the updated row and make the desired
changes again.

For more details, refer to the description of the Locking Mode property
in online Help, or in Oracle Forms Reference Manual, Vol. 2.

Cursor Mode Form Property

The Cursor Mode form property defines the cursor state across
transactions. The cursor refers to the memory work area in which SQL
statements are executed. For more information on cursors, refer to the
ORACLE RDBMS Database Administrator’s Guide.

The following table describes the values that are valid for the
Cursor_Mode option:

Value Description

OPEN
(the default)

Specifies that cursors remain open across
transactions within the data source.

CLOSE Specifies that cursors are closed at commit time
by the datasource.

Because ORACLE allows the database state to be maintained across
transactions, Oracle Forms allows cursors to remain open across
COMMIT operations. This reduces overhead for subsequent execution
of the same SQL statement because the cursor does not need to be
re–opened and the SQL statement does not always need to be
re–parsed.

4 – 7Connecting to Non–ORACLE Data Sources

Some non–ORACLE databases do not allow database cursor state to be
maintained across transactions. Therefore, you can set the Cursor
Mode property to Close to satisfy those requirements. However, keep
in mind that closing cursors at commit time and re–opening them at
execute time can degrade performance in three areas:

• during the COMMIT operation

• during future execution of other SQL statements against the
same records

• during execution of queries

For more details, refer to the description of the Cursor Mode property
in the online Help, or in Oracle Forms Reference Manual, Vol. 2.

Savepoint Mode Form Property

The Savepoint Mode form property specifies whether Oracle Forms
should issue savepoints during a session.

The following table describes the valid settings for the Savepoint Mode
property.

Value Description

True (the default) Specifies that Oracle Forms should issue a savepoint at
form startup and at the start of each Post and Commit pro-
cess.

False Specifies that Oracle Forms is to issue no savepoints, and
that no rollbacks to savepoints are to be performed.

When Savepoint Mode is set to False, Oracle Forms does not allow a
form that has uncommitted changes to invoke another form with the
CALL_FORM procedure.

For more details, refer to the description of the Savepoint Mode
property in online Help, or in Oracle Forms Reference Manual, Vol. 2.

4 – 8 Forms Advanced Techniques

Using Transactional Triggers

Included in Oracle Forms is a set of transactional triggers that fire in
response to transaction processing events. These events represent
points during application processing at which Oracle Forms needs to
interact with the data source. Examples of such events include
updating records, rolling back to savepoints, and committing
transactions.

By default, Oracle Forms assumes that the data source is an ORACLE
database, and issues the appropriate SQL statements to optimize
transaction processing accordingly. However, by defining transactional
triggers and user exits (3GL programs you write yourself and then link
into a form at generate time), you can build a form to interact with
virtually any data source, including even non–relational databases and
flat files.

These next sections explain how you can use transactional triggers to
create applications that run against non–ORACLE data sources. The
specifics of your implementation will, of course, depend on the data
source to which you are connecting.

The information in this chapter provides an overview of what is
required, and points you to other sources of information in the Oracle
Forms documentation set.

Transactional Trigger Set

The set of transactional triggers available for implementing
non–ORACLE data source support includes the following On–event
triggers:

• On–Check–Unique

• On–Close

• On–Column–Security

• On–Commit

• On–Count

• On–Delete

• On–Fetch

• On–Insert

• On–Lock

• On–Logon

4 – 9Connecting to Non–ORACLE Data Sources

• On–Logout

• On–Rollback

• On–Savepoint

• On–Select

• On–Sequence–Number

• On–Update

In addition, there are ”pre–event” triggers and ”post–event” triggers
you can use to trap events that occur just prior to and immediately
after the corresponding On–event:

On–Event Trigger Corresponding Pre/Post Triggers

On–Commit Pre–Commit/Post–Forms–Commit/ Post–
Database–Commit

On–Delete Pre–Delete/Post–Delete

On–Insert Pre–Insert/Post–Insert

On–Logon Pre–Logon/Pre–Logon

On–Logout Pre–Logout/Post–Logout

On–Select Pre–Select/Post–Select

On–Update Pre–Update/Post–Update

The transactional triggers that apply to transaction processing in a
block (On–Select, On–Fetch, etc.) can be defined at either the block level
or the form level. Transactional triggers that apply to the Runform
session (On–Logon, On–Savepoint, On–Rollback, etc.) can be defined at
the form level only.

4 – 10 Forms Advanced Techniques

Replacing Default Processing

The transactional triggers whose names begin with ”On–” (On–Select,
On–Update, etc.) replace the default processing that Oracle Forms
would normally perform at that point in the application. Put another
way, an On–event trigger bypasses the function that Oracle Forms
would execute if there were no On–event trigger at that point. The
following figure shows the first part of the ”Open the Query” flow
chart, taken from Chapter 8 of the Oracle Forms Reference Manual.

Open the Query

The flow chart illustrates how a query is processed differently
depending on whether an On–Select trigger is defined in the form.
When no On–Select trigger is present, Oracle Forms performs the
default processing required to issue the SELECT statement that
identifies the rows in the database that meet the current query criteria
(as specified by the example record).

If, however, an On–Select trigger has been defined at the appropriate
definition level, Oracle Forms bypasses the default processing for
selecting records, and instead executes the code in the On–Select
trigger.

In this case, the On–Select trigger is being executed in place of the
default Oracle Forms processing.

4 – 11Connecting to Non–ORACLE Data Sources

When you define an On–event trigger in a form, you are essentially
telling Oracle Forms not to do what it would normally have done at
that point of transaction processing, because you are going to manage
that function yourself by writing appropriate code in the On–trigger.
That is, you are replacing the default functionality with the functionality
you specify in the On–event trigger.

Calling User Exits

When you define transactional triggers to interact with a non–ORACLE
data source, you will usually include a call to a user exit in the
appropriate triggers. User exits for non–ORACLE data source support
are usually written in one of the third–generation programming
languages for which there is an Oracle Precompiler, including C, Ada,
COBOL, FORTRAN, Pascal, and PL/I. User exits created with an
Oracle Precompiler have access to form variables and item values. You
call a user exit from a trigger with the USER_EXIT built–in procedure.

The code in your user exit interacts with the non–ORACLE data source.
Once the user exit has performed the appropriate function (as indicated
by the trigger from which it was called), it returns control to Oracle
Forms for subsequent processing. For example, a user exit called from
an On–Fetch trigger might be responsible for retrieving the appropriate
number of records from the non–ORACLE data source. Once the
records are retrieved, Oracle Forms takes over the display and
management of those records in the form interface, just as it would if
the records had been fetched from an ORACLE database.

Note: You can also call external functions directly from PL/SQL,
without having to write user exits. For information, refer to Oracle
Forms Advanced Techniques, Chapter 13, “PL/SQL Interface to Foreign
Functions.”

Augmenting and Suppressing Default Processing

When you develop applications to run against a non–ORACLE data
source, you will often use On–event triggers to completely replace the
default Oracle Forms processing with your own, data source–specific
functionality.

Occasionally, however, you may simply want to augment the default
functionality that Oracle Forms normally performs at some transaction
event–point. Or you might want to suppress the default processing
entirely, without doing anything in its place. This section explains how
On–triggers, together with appropriate built–in subprograms, can be
used to augment or suppress default transaction processing.

4 – 12 Forms Advanced Techniques

Built–in Subprograms for On–Event Triggers For most of the
transactional On–event triggers, there is a corresponding built–in
subprogram.

On–Event Trigger Corresponding Built–in

On–Check–Unique CHECK_RECORD_UNIQUENESS

On–Close none

On–Column–Security ENFORCE_COLUMN_SECURITY

On–Commit COMMIT_FORM

On–Count COUNT_QUERY

On–Delete DELETE_RECORD

On–Fetch FETCH_RECORDS

On–Insert INSERT_RECORD

On–Lock LOCK_RECORD

On–Logon LOGON

On–Logout LOGOUT

On–Rollback ISSUE_ROLLBACK

On–Savepoint ISSUE_SAVEPOINT

On–Select SELECT_RECORDS

On–Sequence–Number GENERATE_SEQUENCE_NUMBER

On–Update UPDATE_RECORD

When you call one of these built–in subprograms from its
corresponding transactional trigger, Oracle Forms performs the default
processing that it would have done normally at that point in the
transaction.

For example, if you call the INSERT_RECORD procedure from an
On–Insert trigger, Oracle Forms performs the default processing for
inserting a record in the database during a commit operation.

When these built–ins are issued from within their corresponding
transactional triggers, they are known as do–the–right–thing built–ins.
That is, they do what Oracle Forms would normally have done at that
point if no trigger had been present. Thus, an On–Insert trigger that
calls the INSERT_RECORD procedure is functionally equivalent to not
having an On–Insert trigger at all. Such a trigger is explicitly telling
Oracle Forms to do what it would have done by default anyway.

4 – 13Connecting to Non–ORACLE Data Sources

Augmenting Default Processing You can call do–the–right–thing
built–ins from transactional triggers when you want to augment default
processing. That is, when you want Oracle Forms to do what it would
normally do, and also do something else. For example, you might
create a form with three blocks, two of which are based on tables in an
ORACLE database and one of which is based on data in a
non–ORACLE database. At startup, the form needs to log on to
ORACLE, and also to establish that the non–ORACLE data source is
available. Your On–Logon trigger might look like this:

On–Logon Trigger:

/* Do the default logon to ORACLE */

Logon;

/* Now initialize the non–ORACLE data source */

User_Exit(’other_db’);

If you had failed to include the LOGON built–in in this trigger, Oracle
Forms would never have performed its default logon processing.

A related use for do–the–right–thing built–ins is to create applications
that can run against both an ORACLE database and a non–ORACLE
data source. By including a conditional statement in the appropriate
transactional triggers, you can build a form that performs default
transaction processing when running against ORACLE, or executes the
appropriate user exits to run against a non–ORACLE data source. The
decision can be based on the current value of a form parameter or
global variable that gets set at form startup.

On–Insert Trigger:

IF :PARAMETER.which_db = ’oracle’ THEN

 Insert_Record;

ELSE

 User_Exit(’do_insert’);

END IF;

4 – 14 Forms Advanced Techniques

If you use any of the do–the–right–thing built–ins in your transactional
triggers, be sure to check for their success or failure immediately
afterward by using one of these techniques:

• Call Check_Package_Failure (which should automatically have
been created in any form that contains a relation).

or

• Check the FORM_SUCCESS (BOOLEAN) function and raise the
Form_Trigger_Failure exception if the do–the–right–thing
built–in fails.

The following example trigger illustrates this technique:

On–Delete Trigger:

/*

** Checking result of do–the–right–thing built–in

*/

IF (some–condition) THEN

 User_Exit(’DELREC’);

ELSE

 Delete_Record;

 Check_Package_Failure;

END IF;

Since a failure does not halt the currently–executing trigger, if you do
not check for failure and raise the exception, the trigger will continue to
execute and exit successfully. Unless Form_Trigger_Failure is raised
appropriately, Runform will assume that your On–Delete trigger
accomplished its goal.

Using the NULL Statement Another use for the On–event triggers is
to suppress default processing completely, without replacing or
augmenting it with alternative code. You can suppress default
transaction processing by including the NULL statement in the
appropriate On–event trigger.

An example of functionality you might want to suppress is default
locking. By default, Oracle Forms takes advantage of the record
locking capabilities of ORACLE by attempting to obtain locks as
operators query and modify records. The On–Lock trigger fires
whenever Oracle Forms requests a lock. If, however, your
non–ORACLE data source does not support locking, or you want to
implement a fully–optimistic locking scheme, you must suppress
default locking to avoid errors.

4 – 15Connecting to Non–ORACLE Data Sources

For example, to suppress locking you could define the following
On–Lock trigger:

On–Lock Trigger

NULL;

This trigger suppresses default processing by ”replacing” it with
NULL, that is, by doing nothing.

Transactional Triggers Block Property

There is a Transactional Triggers block property that you can set to
identify blocks in your form as non–database blocks that Oracle Forms
should manage as transactional blocks.

Recall that a base table block is one that is based on a database table or
view. The Base Table block property identifies the table on which such
a block is based. By default, Oracle Forms automatically supports
transaction processing from a base table block; that is, operators can
execute queries in the block, and inserts and updates are automatically
processed by the next commit.

When you create a non–ORACLE data source application, you are
essentially simulating the functionality of a base table block by creating
a transactional control block. Such a block is a control block because its
base table is not specified at design time (the Base Table block property
is NULL), but it is transactional because there are transactional triggers
present that cause it to function as if it were a base table block.

In a non–ORACLE data source application, you will often need to
define both transactional control blocks and standard control blocks.
For example, you might define a standard control block to display
totals and summary information calculated from queried records in a
transactional block.

When you build such an application, you need a way to specify which
control blocks are transactional, and which are merely standard control
blocks. You can do so by setting the Transactional Triggers block
property to True for any control block that you want Oracle Forms to
treat as a transactional block.

Note: When you create a block to run against either ORACLE or a
non–ORACLE data source (with an IF statement in each transactional
trigger), you must set the Base Table property as you would normally.
In this case, you do not set the Transactional Triggers property to True.

4 – 16 Forms Advanced Techniques

Which Transactional Triggers are Required

One of the first steps when building a non–ORACLE data source
application is to decide which transactional triggers you will need to
define. In most non–ORACLE data source applications, all of the
transactional triggers are present, but only some of them actually call
user exits to interact with the non–ORACLE data source. The
remainder are used simply to suppress default processing, and so
contain only NULL statements.

It is important to remember that Oracle Forms will attempt to perform
default processing for any transactional event for which you do not
define a corresponding On–event trigger.

Deciding which triggers should call user exits to interact with the
non–ORACLE data source and which will be used only to suppress
default processing requires an understanding of how Oracle Forms
interacts with the data source during transaction processing. The next
sections explain these processes in greater detail.

About Transaction Processing

This section provides information about specific areas of transaction
processing that you need to be aware of when you define transactional
triggers for non–ORACLE data source support. It covers the following
topics:

• Logon and Logout Processing

• Query and Fetch Processing

• Count Query Processing

• Commit Processing

• Savepoint and Rollback Processing

• Check Column Security Processing

• Generate Sequence Number Processing

• Lock Record Processing

These sections frequently refer to specific triggers, built–in
subprograms, object properties, and processing flow charts that are
described elsewhere in the Oracle Forms documentation set:

4 – 17Connecting to Non–ORACLE Data Sources

• For descriptions of specific transactional triggers, refer to the
online Help or Chapter 2, “Triggers,” in the Oracle Forms
Reference Manual, Vol. 1.

• For descriptions of specific do–the–right–thing built–ins, refer to
the online Help or Chapter 3, “Built–in Subprograms,” in the
Oracle Forms Reference Manual, Vol. 1.

• For information on object properties, refer to the online Help or
Chapter 5, ”Properties,” in the Oracle Forms Reference Manual, Vol.
2. The following properties are especially important for
non–ORACLE data source support:

– Column Security

– Database_Value

– Datasource

– Key Mode

– Locking Mode

– Primary Key

– Query_Hits

– Query_Options

– Records_to_Fetch

– Savepoint Mode

– Savepoint_Name

– Transactional Triggers

– Update_Permission

• For information on user exits, refer to Chapter 3, User Exit
Interface to Foreign Functions,” in Oracle Forms Advanced
Techniques.

• For descriptions of runtime processes, refer to the following flow
charts in Chapter 8, “Processing Flowcharts,” in the Oracle Forms
Reference Manual, Vol. 2.

– Check Record Uniqueness

– Close the Query

– Count_Query

– Execute_Query

– Fetch Records

4 – 18 Forms Advanced Techniques

– Generate Sequence Number

– Lock_Record

– Lock the Row

– Logon

– Logout

– Open the Query

– Post and Commit Transactions

– Prepare the Query

– Savepoint

Logon and Logout Processing

By default, Oracle Forms attempts to log on at form startup, either to
ORACLE or to an Open Gateway connection. There can be only one
such default connection per Runform session. It is possible, however, to
programmatically log out of one connection and log on to another
during a session. It is also possible to create a form that has one or
more base table blocks running against a default connection and one or
more transactional control blocks running against a non–ORACLE data
source.

The following transactional triggers are available for replacing and
augmenting the default logon and logout processing:

Logon Triggers:

• Pre–Logon

• On–Logon

• Post–Logon

Logout Triggers:

• Pre–Logout

• On–Logout

• Post–Logout

In a non–ORACLE data source application, the On–Logon and
On–Logout triggers are usually required. These triggers fire when
Oracle Forms normally interacts with ORACLE, and so must either
suppress or replace the default interaction. In fact, if you were to build
a form that required no data source at all, such as a demo or tutorial

4 – 19Connecting to Non–ORACLE Data Sources

application, you would still need to include an On–Logon trigger to
suppress the default logon attempt.

Using the LOGON_SCREEN Built–in If your non–ORACLE data
source does not enforce security, you need only suppress the default
Oracle Forms logon in an On–Logon trigger. If, however, you plan to
enforce a security scheme, you may want to capture the current
operator’s username, password, and connect string to use when
”logging on” to the non–ORACLE data source. You can do so with the
LOGON_SCREEN built–in procedure.

LOGON_SCREEN causes Oracle Forms to display the default Runform
logon screen. The logon screen has fields for an operator to enter a
username, password, and connect string. Once an operator accepts the
logon screen, these values are known to Oracle Forms, and you can
obtain them programmatically with a call to
GET_APPLICATION_PROPERTY.

The following example trigger illustrates this sequence:

On–Logon Trigger:

/* Display the logon screen to get the operator’s
username, password, and connect string */

Logon_Screen;

/* Ask Oracle Forms for the username, password, and

connect string that were entered

*/

:control.op_name := Get_Application_Property(USERNAME);

:control.op_pw := Get_Application_Property(PASSWORD);

:control.op_con := Get_Application_Property(CONNECT_STRING);

/* Now call a user exit that ”connects” to the non–ORACLE

data source */

User_Exit(’my_connect’);

The user exit code includes an EXEC TOOLS GET statement that reads
the values of the control items containing the username, password, and
connect string and then uses those values to ”log on” to the
non–ORACLE data source.

Note: A user exit can read the values of form bind variables, including
items, global variables, and form parameters. A user exit cannot read a
local PL/SQL variable in a form. However, you can assign the value of
a local PL/SQL variable to a NULL canvas item and then refer to that
value in the user exit. Another method would be to pass parameters
from the form to the user exit as part of the user exit command string.

4 – 20 Forms Advanced Techniques

Determining the Data Source You can use the built–in function
GET_APPLICATION_PROPERTY (DATASOURCE) to determine the
data source to which Oracle Forms is currently connected (ORACLE,
DB2, etc.). It is important to note that this property identifies the
default connection––either to ORACLE or to an Open Gateway
connection. When there is no default connection, for example, when
there is an On–Logon trigger that replaces the default logon with a
”logon” to a non–ORACLE data source, the return value of
GET_APPLICATION_PROPERTY(DATASOURCE) is NULL.

For more information, refer to the following flow charts in Chapter 8 of
the Oracle Forms Reference Manual, Vol. 2:

• Logon

• Logout

Count Query Processing

Count query processing refers to the sequence of events that occurs
when the operator or the application initiates a count query hits
operation, either with a default key or menu command, or through a
call to the COUNT_QUERY built–in procedure.

Operators use the count query hits feature to find out how many
records meet the current query criteria, without actually fetching those
records from the data source. When the operator issues the Count
Query Hits command, Oracle Forms displays message FRM–40355:

Query will retrieve <n> records.

The first part of Count Query processing is similar to the first part of
Query and Fetch processing. Both require Oracle Forms to initialize the
example record, clear the block, and prepare the query. In a Count
Query operation, Oracle Forms then determines how many records
meet the query criteria and displays that number in a message on the
message line. In Query and Fetch processing, Oracle Forms identifies
the records and then fetches them into the block as needed.

During a Count Query operation, the following transactional triggers
fire if they are present:

• Pre–Query

• Pre–Select

• On–Count

Of these, the On–Count trigger is required if you want to implement
the count query hits feature against a non–ORACLE data source. (The
Pre–Query and Pre–Select triggers are used to augment default query

4 – 21Connecting to Non–ORACLE Data Sources

processing, rather than directly replace it. Note that these triggers also
fire during normal Query and Fetch processing.)

On–Count Trigger To replace default count query processing, the code
in the On–Count trigger must do the following:

• Call a user exit that interacts with the non–ORACLE data source
to determine the number of records that match the current query
criteria.

• Call SET_BLOCK_PROPERTY to set the value of the Query_Hits
block property to the number of records identified by the user
exit.

For example, your On–Count trigger might call a user exit that
identifies the number of records that meet the query criteria and then
executes the EXEC TOOLS SET statement to set the value of a global
variable in the form accordingly. The global variable can then be
referenced in a call to SET_BLOCK_PROPERTY:

User_Exit(’get_count’);

Set_Block_Property(’block3’,QUERY_HITS,:global.record_count);

When the On–Count trigger completes execution, Oracle Forms issues
the standard query hits message, using the value of the Query_Hits
block property to indicate the number of records identified by the
query criteria:

FRM–40355: Query will retrieve <value of Query_Hits block

property> records.

Oracle Forms will display the query hits message even if the On–Count
trigger fails to set the value of the Query_Hits block property. In such a
case, the message reports 0 records.

If you want to augment, rather than replace, default Count Query
processing, you can call the COUNT_QUERY built–in from the
On–Count trigger.

Note: You can also call GET_BLOCK_PROPERTY to examine the
current value of the Query_Hits property. Be aware, however, that the
Query_Hits setting is interpreted differently depending on where you
examine it:

• In an On–Count trigger, Query_Hits specifies the number of
records identified by the query criteria.

• During fetch processing (outside an On–Count trigger),
Query_Hits specifies the number of records that have been
placed on the block’s list of records so far.

4 – 22 Forms Advanced Techniques

For more information on Count Query processing, refer to the
following flow charts in Chapter 8 of the Oracle Forms Reference Manual,
Vol. 2.

• Check Block for Query

• Count Query

• Prepare the Query

Query and Fetch Processing

Query and fetch processing refers to the sequence of events that occurs
when the operator or the application initiates a query, either with a
default key or menu command, or through a call to the
EXECUTE_QUERY built–in procedure.

To understand Query and Fetch processing, it is important to
distinguish between the querying phase, or selection, and the fetch
phase. Selection is the operation that identifies records in the data
source that match the current query criteria. Fetching is the operation
that actually retrieves those records from the data source and places
them on the block’s list of records as needed.

During Query and Fetch processing, the following transactional
triggers fire if they are present:

Selection Phase:

• Pre–Query

• Pre–Select

• On–Select

• Post–Select

Fetch Phase:

• On–Fetch (fires as many times as needed to fetch all records)

• Post–Query (fires once for each record placed on the block’s list
of records)

• On–Close

Of these, the On–Select and On–Fetch triggers are required when you
implement support for a non–ORACLE data source.

The On–Select trigger is responsible for constructing a query based on
the current example record, then executing it against the non–ORACLE
datasource to identify those records that match the query criteria.

4 – 23Connecting to Non–ORACLE Data Sources

The On–Fetch trigger is responsible for determining how many records
are required by the block, creating the appropriate number of records
on the block’s waiting list (using the data that were identified by the
On–Select trigger and then retrieved from the non–ORACLE data
source), and signaling to the form when all of the records have been
fetched.

A query remains ”open” until all of the records identified by the query
criteria have been fetched, or until the operator or the application
aborts the query.

While the query remains open, the On–Fetch trigger continues to fire
whenever the form needs more records to be placed on the block’s list
of records. For example, as the operator scrolls down through the
block’s list of records, the On–Fetch trigger will fire as many times as
necessary to fetch more records to be displayed in the block.

Note: Default query and fetch processing is described in the following
flow charts in the Oracle Forms Reference Manual, Vol. 2:

• Check Block for Query

• Open the Query

• Prepare the Query

• Fetch Records

Selection Processing The On–Select trigger fires at the point during
default processing when Oracle Forms normally constructs, opens,
parses, and executes a query. When you implement support for a
non–ORACLE data source, the code in your On–Select trigger replaces
this default functionality

By default, query and fetch processing is a two–step process, one step
to identify the records in the data source, and another to fetch them
into the form. This approach may or may not be appropriate for a
non–ORACLE data source application. As long as the code in the
On–Fetch trigger creates enough records to meet the requirements of
the block, it is up to you when and how the data for those records are
actually retrieved from the non–ORACLE data source.

One method would be to have the user exit called in the On–Select
trigger actually retrieve some or all of the records, rather then deferring
that operation until the Fetch phase. Using this technique, the code in
the On–Select trigger might create a client–side record cache from
which records would be subsequently read into the form by the user
exit called from the On–Fetch trigger.

4 – 24 Forms Advanced Techniques

Or, you might use the On–Select trigger only to suppress default
Selection processing, and do all of your query and fetch processing in
the On–Fetch trigger. The specifics of your implementation will
depend on the characteristics of the data source to which you are
connecting.

For some applications, you may need to know what type of query
Oracle Forms is processing. You can find out by using
GET_BLOCK_PROPERTY to read the value of the Query_Options
property. The Query_Options property is read–only, and is set at
runtime to one of the following values:

Indicates that the current query operation is a
count query operation. This value occurs only
when Query_Options is examined from within an
On–Count trigger.

Indicates that the FOR_UPDATE option was
specified for EXECUTE_QUERY. By default,
FOR_UPDATE causes Oracle Forms to attempt an
immediate lock on records being selected.

Indicates that the query is being processed against
a view, rather than a table. By default, this causes
Oracle Forms to issue its default SELECT
statement without using row IDs. Because the use
of row IDs is unique to ORACLE, this is usually
not relevant when running against a non–ORACLE
data source.

Indicates that no query is being processed.

Fetch Processing The On–Fetch trigger replaces Oracle Forms default
fetch processing, and must perform the following actions:

• determine how many records to fetch

• create that number of records on the block’s waiting list

• signal to the form when there are no more records to fetch so
that the query can be closed

COUNT_QUERY

FOR_UPDATE

VIEW

NULL

4 – 25Connecting to Non–ORACLE Data Sources

The following example shows an On–Fetch trigger that populates an
employee block named emp. The emp block contains three text items,
empno, ename, and sal.

On–Fetch Trigger:

DECLARE

 recs NUMBER;

 emp_id NUMBER;

 emp_name VARCHAR2(40);

 emp_sal NUMBER;

BEGIN

 /* Determine how many records are needed */

 recs := Get_Block_Property(’emp’, RECORDS_TO_FETCH);

 /* Attempt to fetch that many records from the data source */

 FOR j IN 1..recs LOOP

 /* If a row is retrieved, then create a queried record

 for it and populate the record with data values retrieved

 from the non–ORACLE data source /*

 IF fetch_row(emp_id, emp_name, emp_sal) THEN

 Create_Queried_Record;

 :emp.empno := emp_id;

 :emp.ename := emp_name;

 :emp.sal := emp_sal;

 END IF;

 END LOOP;

END;

Determining How Many Records to Fetch The first requirement for
the On–Fetch trigger is to determine how many records are required by
the block. As shown in the example, this is accomplished by examining
the value of the Records_To_Fetch block property:

 /* Determine how many records are needed */

 recs := Get_Block_Property(’emp’, RECORDS_TO_FETCH);

The Records_To_Fetch block property is a runtime, read–only property
whose value is set internally by Oracle Forms, based on how many
records the form has requested for the block. The first time the
On–Fetch trigger fires during a query, the Records_To_Fetch property is
set to the array size or to the number of records displayed + 1,
whichever is greater.

Note: A block’s default array size is specified by the Records Fetched
block property. The number of records a block can display is specified
by the Records Displayed block property, and determines whether a
block is a single– or multi–record block.

4 – 26 Forms Advanced Techniques

Creating Queried Records Once the number of records required is
known, the On–Fetch trigger must create that number of records on the
block’s waiting list. The waiting list is an intermediary record buffer
that contains records that have been fetched from the data source, but
have not yet been placed on the block’s list of active records.

Creating queried records is usually accomplished with a loop that uses
the Records_To_Fetch value as its index, as shown in the example:

/* Attempt to fetch that many records from the data source */

FOR j IN 1..recs LOOP

 /* If a row is retrieved, then create a queried record

 for it and populate the record with data values retrieved

 from the non–ORACLE data source /*

 IF fetch_row(emp_id, emp_name, emp_sal) THEN

 Create_Queried_Record;

 :emp.empno := emp_id;

 :emp.ename := emp_name;

 :emp.sal := emp_sal;

 END IF;

END LOOP;

The built–in procedure CREATE_QUERIED_RECORD is called once
inside the loop for each record required by the block.
CREATE_QUERIED_RECORD creates a record on the block’s waiting
list. The new record is essentially an empty place–holder. To populate
the empty record with data from the non–ORACLE data source, the
data values for each column in the fetched record must be assigned to
the corresponding fields in the new queried record, using standard
bind variable syntax. You must do the assignment immediately after
the record is created; it is not possible to create a ”batch” of records and
then subsequently try to populate them.

Notice that the previous example does not show how records from the
non–ORACLE data source are retrieved and managed before their
values are placed into queried records on the block’s waiting list.
Again, the specifics of your implementation will depend on the data
source to which you are connecting, and on how you choose to manage
these operations.

In most implementations, a call to a user exit is made from inside the
loop in the On–Fetch trigger. The user exit is responsible for getting a
record from the non–ORACLE data source, assigning column values
from the fetched record to form variables, and then returning control to
the On–Fetch trigger so that the trigger code can create a queried
record on the block’s waiting list and populate it with the values from
the non–ORACLE data source.

4 – 27Connecting to Non–ORACLE Data Sources

As you can see, this technique requires that the user exit and Oracle
Forms be tightly coupled. Specifically, you need the ability to set and
get the values of form bind variables from within the user exit, and the
ability to pass control between the form trigger and the user exit
without losing the current context of either. To make this sort of
interaction possible, Oracle has included the following commands that
you can execute in user exits that you create with an Oracle
Precompiler:

• EXEC TOOLS GET

• EXEC TOOLS SET

• EXEC TOOLS GET CONTEXT

• EXEC TOOLS SET CONTEXT

For information on these commands, see Oracle Forms Advanced
Techniques, Chapter 3, “User Exit Interface to Foreign Functions.”

Signaling an End–of–Fetch As mentioned previously, a query remains
”open” until all of the records identified by the query criteria have been
fetched, or until the operator or the application aborts the query. When
the form requests more records to be fetched from an open query
(because, for example, the operator scrolls to the end of the block’s list
of records), the On–Fetch trigger will fire as necessary to meet the
demand for more records.

Eventually, however, all of the records that match the query criteria will
have been placed on the block’s list of records by the On–Fetch trigger.
When this occurs, the On–Fetch trigger needs a way to signal to the
form that no more records are available so that the On–Fetch trigger
stops firing. Oracle Forms uses the following mechanism to
accomplish this:

When the On–Fetch trigger fires successfully but does not create any
queried records (by executing CREATE_QUERIED_RECORD), Oracle
Forms assumes there are no more records to be fetched, and so closes
the query and does not fire the On–Fetch trigger again.

In the previous example trigger, you saw that a queried record was
created only if the user–named, BOOLEAN function called fetch_row
returned TRUE. In an actual application, the fetch_row function might
call a user exit to determine if another row is available in the
non–ORACLE data source. If fetch row returns TRUE, that is, if there
was another row to be fetched, then CREATE_QUERIED_RECORD
creates a record. Otherwise, the loop executes without creating any
more records.

4 – 28 Forms Advanced Techniques

FOR j IN 1..recs LOOP

 /* If a row is retrieved, then create a queried record

 for it and populate the record with data values retrieved

 from the non–ORACLE data source /*

 IF fetch_row(emp_id, emp_name, emp_sal) THEN

 Create_Queried_Record; –– only if there is another

 :emp.empno := emp_id; –– row in the data source

 :emp.ename := emp_name;

 :emp.sal := emp_sal;

 END IF;

END LOOP;

Oracle Forms also looks at the number of records created by the
On–Fetch trigger and sets the value of the Records_To_Fetch block
property accordingly:

• The first time the On–Fetch trigger fires for a query, the value of
Records_To_Fetch is set to the array size or to the number of
records displayed + 1, whichever is greater.

• If the On–Fetch trigger creates this many queried records, the
next time the On–Fetch trigger fires, the value of
Records_To_Fetch will be the same number.

• If the On–Fetch trigger creates fewer records than specified by
Records_To_Fetch, Oracle Forms fires the On–Fetch trigger again
immediately, and sets Records_To_Fetch to the previous value
minus the number of queried records created by the previous
execution of the On–Fetch trigger.

Note: The On–Fetch trigger must never create more queried records
than are required by the form (as indicated by the Records_To_Fetch
property). Doing so will irretrievably disrupt form processing. (You
can raise the built–in exception FORM_TRIGGER_FAILURE when fetch
errors occur in the On–Fetch trigger to return to normal form
processing.)

Closing the Query By default, Oracle Forms closes a query when all of
the records have been fetched or the operator or the application aborts
the query. In a non–ORACLE data source application, no action is
required by you to explicitly close a query.

In certain cases, however, you might need to ”close,” or clean up, the
connection to your non–ORACLE data source. For example, if the user
exit that was called from the On–Fetch trigger was maintaining a
record cache or some other context, you might want to free up those
resources when they are no longer required because the query has been
closed.

4 – 29Connecting to Non–ORACLE Data Sources

You can accomplish operations of this type in an On–Close trigger.
Note that unlike other On–event triggers, the On–Close trigger actually
augments, rather than replaces, the default close query operation.
(Oracle Forms must always close a query at the appropriate time to
avoid an inconsistent state in the form.)

Commit Processing

Commit Processing refers to the sequence of events that occurs when
the operator or the application initiates a database commit operation,
either with a key or menu command, or by executing the
COMMIT_FORM built–in procedure.

Default commit processing happens in three parts:

• Validation When the operator or the application initiates a
commit operation, Oracle Forms validates the records on each
base table block’s list of records.

• Posting During posting, Oracle Forms moves to each block in
the form and writes any pending updates, inserts, and deletes to
the database.

• Committing By default, Oracle Forms issues a savepoint at the
start of a commit operation. Changes that have been posted to
the database but not yet committed can be rolled back to this
savepoint. To finalize the commit transaction, Oracle Forms
must explicitly issue the COMMIT statement. This happens as
the final step of Commit processing.

For a detailed description of default commit processing, refer to the
following flow charts in Chapter 8 of the Oracle Forms Reference Manual,
Vol. 2:

• Check Record Uniqueness

• Post and Commit Transactions

• Savepoint

• Validate the Form

During Commit processing, the following transactional triggers will
fire as necessary if they are present:

• On–Savepoint (fires once at the beginning of the transaction)

• Pre–Commit (fires once at the beginning of validation)

• Pre–Delete/On–Delete/Post–Delete (fires once for each record
being deleted)

4 – 30 Forms Advanced Techniques

• Pre–Update/On–Update/Post–Update (fires once for each
record being updated)

• Pre–Insert/On–Insert/Post–Insert (fires once for each record
being inserted)

• On–Check–Unique (may fire once for each record inserted or
updated, depending on primary key constraints)

• Post–Forms–Commit (fires after posting, before the database
commit)

• On–Commit (fires once at the end of the transaction)

• Post–Database–Commit (fires after On–Commit)

Of these, the following are always required in a non–ORACLE data
source application that allows operators to modify queried records:

• On–Savepoint

• On–Delete

• On–Update

• On–Insert

• On–Commit

The On–Check–Unique trigger is also required if your application is
verifying that each record has a unique primary key before updating or
inserting the record in the data source. (This happens by default when
the block has the Primary Key block property and one or more items in
the block have the Primary Key item property set to True.)

When Oracle Forms is running against ORACLE, posting and
committing are separate operations. If, however, your non–ORACLE
data source does not support this functionality, changes you write to
the data source are final, and do not have to be committed as a separate
operation. In this case, you might define an On–Commit trigger only to
suppress the default Oracle Forms COMMIT statement, and write all of
your changes to the data source in user exits called by the On–Delete,
On–Update, and On–Insert triggers.

Note: The On–Savepoint trigger fires at the start of Commit
processing, and is discussed in the topic ”Savepoint and Rollback
Processing.”

4 – 31Connecting to Non–ORACLE Data Sources

Processing Inserts, Updates, and Deletes During commit processing,
the On–Delete, On–Update, and On–Insert triggers fire once for each
record in the block that was changed. These triggers replace the
default processing that Oracle Forms would normally perform at that
point. For example, the On–Update trigger fires when Oracle Forms
would normally issue the appropriate SQL UPDATE statement to
update the row in the database that corresponds to the record that was
modified by the form operator.

To replace default processing, you need to write a separate user exit for
the On–Delete, On–Update, and On–Insert triggers. These user exits
are responsible for performing the appropriate action on the
corresponding row in the non–ORACLE data source. Again, the
specifics of your implementation will depend on the characteristics of
your data source. The following On–Delete trigger calls a user exit
named kill_row that is responsible for deleting the appropriate row
from the non–ORACLE data source:

On–Delete Trigger:

User_Exit(’kill_row’);

Obviously, the code in the user exit needs to know which record is
being processed by Oracle Forms so that it can act on the
corresponding row in the non–ORACLE data source. This is made
possible by the fact that Oracle Forms processes inserts, updates, and
deletes sequentially, one record at a time. Within an On–Delete,
On–Update, or On–Insert trigger, the record being deleted, inserted, or
updated is always the current record. This means that you can use
standard bind variable syntax (:block_name.item_name) to reference the
values of items in the current record from within these triggers.
(Remember that a user exit can read the values of form bind variables
with the EXEC TOOLS GET statement.)

Checking for Unique Primary Keys You can designate one or more
items in a block as primary key items by setting the Primary Key item
and block properties to True. When these properties are set, Oracle
Forms enforces primary key uniqueness by

• preventing updates to primary key columns in the base table

• preventing the insertion of records that contain duplicate
primary key values

4 – 32 Forms Advanced Techniques

Oracle Forms checks the uniqueness of primary key values just before
inserting or updating the record in the database. When a record has
been inserted in a block, Oracle Forms will always perform the
uniqueness check. When a record has been updated, Oracle Forms
performs the uniqueness check only if one or more primary key item
values were modified.

Oracle Forms checks the uniqueness of a record by constructing and
executing the appropriate SQL statement to select for database rows
that match the record about to be inserted or updated. If a row having
a duplicate primary key is found, Oracle Forms displays message
FRM–40600: Row has already been inserted. and disallows the
insert or update. When this happens, the input focus remains in the
offending record, allowing the operator to correct the problem before
trying to commit again.

If your non–ORACLE data source application supports primary key
uniqueness, you can replace Oracle Forms default uniqueness checking
by calling an appropriate user exit from an On–Check–Unique trigger.
When the Primary Key item and block properties are set to True, this
trigger fires just before the On–Insert trigger and, when necessary
(because a primary key value was modified), just before the
On–Update trigger.

On–Check–Unique Trigger The code in the On–Check–Unique trigger
might perform the following tasks:

• read the values of the primary key items in the current record

• compare those values against rows in the data source

• if a duplicate row is found, display an appropriate message or
alert to inform the operator, then raise the built–in exception
FORM_TRIGGER_FAILURE to explicitly cause the trigger to fail
and abort commit processing

The following example shows what such a trigger might look like:

On–Check–Unique Trigger::

DECLARE

 duplicate BOOLEAN;

BEGIN

 User_Exit(’do_check’);

 IF duplicate THEN

 Message(’Primary key must be unique. Unable to commit.’);

 Bell;

 RAISE Form_Trigger_Failure;

 END IF;

END;

4 – 33Connecting to Non–ORACLE Data Sources

In this example, the user exit do_check checks for duplicate primary key
values in the non–ORACLE data source, then sets the value of the
BOOLEAN variable duplicate accordingly. Raising the
FORM_TRIGGER_FAILURE exception causes the trigger to fail, which
in turn causes Oracle Forms to abort commit processing and roll back
to the last savepoint.

Savepoint and Rollback Processing

By default, Oracle Forms issues a savepoint at form startup, and at the
beginning of each Commit process. When necessary, Oracle Forms
issues the appropriate SQL rollback statement to undo changes that
were posted since the last savepoint was issued. If your application
will run against a non–ORACLE data source that does not support
savepoints, you can suppress the default savepoint and rollback
statements issued by Oracle Forms by setting the Savepoint Mode form
module property to False.

Note: When Savepoint Mode is False, Oracle Forms does not allow a
form that has uncommitted changes to invoke another form with the
CALL_FORM procedure. While this behavior is usually appropriate
when running against ORACLE, it may be undesirable when running
against a non–ORACLE data source, even one that does not support
savepoints. To prevent this situation, you might choose to suppress
savepoint processing by leaving the Savepoint Mode property to True,
but including the NULL statement in the On–Savepoint and
On–Rollback triggers.

When the Savepoint Mode form module property is left True (the
default), Oracle Forms attempts to issue savepoints and rollbacks as
necessary. In a non–ORACLE data source application, you will need to
define On–Savepoint and On–Rollback triggers to replace the default
processing that normally occurs during these events.

By default, Oracle Forms manages savepoint names internally.
Savepoint names are in the format FM_<number>, where number is an
integer value from a counter that increments each time a savepoint is
issued, and decrements when a rollback occurs. For example, when
Form_A calls Form_B with CALL_FORM, Oracle Forms issues
savepoint FM_n. If the operator then initiates a commit in Form_B,
Oracle Forms issues savepoint FM_n+1. If an error occurs during the
commit, Oracle Forms attempts to roll back to savepoint n + 1.

4 – 34 Forms Advanced Techniques

When you implement custom savepoint functionality by writing
On–Savepoint and On–Rollback triggers, you can capture the savepoint
names that Oracle Forms would use by default by calling
GET_APPLICATION_PROPERTY to examine the current value of the
Savepoint_Name property:

my_savepoint := Get_Application_Property(SAVEPOINT_NAME);

The value of Savepoint_Name depends on whether you examine it
from an On–Savepoint or On–Rollback trigger:

• In an On–Savepoint trigger, Savepoint_Name returns the name
of the savepoint that Oracle Forms would be issuing by default,
if no On–Savepoint trigger were present.

• In an On–Rollback trigger, Savepoint_Name returns the name of
the savepoint to which Oracle Forms would roll back, if no
On–Rollback trigger were present.

In an application that runs against both ORACLE and a non–ORACLE
data source, you can use the ISSUE_SAVEPOINT built–in to issue the
correct savepoint from an On–Savepoint trigger:

IF Get_Application_Property(DATASOURCE) = ’ORACLE’ THEN

 Issue_Savepoint(Get_Application_Property(SAVEPOINT_NAME);

ELSE

 User_Exit(’non_ora’);

END IF;

Note: The value of Savepoint_Name is undefined outside an
On–Savepoint or On–Rollback trigger.

Check Column Security Processing

Check Column Security processing refers to the sequence of events that
occurs when Oracle Forms enforces column–level security for each
block that has the Column Security block property set to True. To
enforce column security, Oracle Forms does the following:

• queries the database to determine the base table columns to
which the current form operator has update privileges

• for columns to which the operator does not have update
privileges, Oracle Forms makes the corresponding base table
items in the form non–updateable by setting the Update Allowed
item property to False dynamically

By default, Oracle Forms performs these steps at form logon,
processing each block in sequence.

4 – 35Connecting to Non–ORACLE Data Sources

If your non–ORACLE data source application does not require
column–level security, you can suppress the default processing by
making sure that the Column Security property is set to False for each
block in the form, or by defining an On–Column–Security trigger that
suppresses default processing.

On–Column–Security Trigger If you want to implement a security
check comparable to Oracle Forms default processing, you must define
an On–Column–Security trigger. The code in the On–Column–Security
trigger might do the following:

• call GET_APPLICATION_PROPERTY to get the current form
operator’s username and password

• interact with the non–ORACLE data source to determine the
columns to which the current operator has update privileges

• call SET_ITEM_PROPERTY to set the Update_Permission
property to False for any items that operators should not be
allowed to modify (when Update_Permission is False, operators
are not allowed to update the item, and its value is not included
in any UPDATE statement generated by Oracle Forms.)

The On–Column–Security trigger fires once for each block that has the
Column Security property On, and can be defined at either the form
level or block level. Note, however, that when you define this trigger
at the form level, there is no explicit way to determine which block
Oracle Forms is currently processing. (Because the
On–Column–Security trigger fires at startup, before the form is
instantiated, the value of SYSTEM.CURRENT_BLOCK is still
undefined.) In this case, you must keep track of the current block
yourself, based on the fact that blocks with the Column Security
property set to True are processed sequentially, according to the
sequence of the blocks in the form. (Block sequence is defined at design
time by the order of blocks listed in the Object Navigator.)

When you define the On–Column–Security trigger at the block level,
the current block context is, of course, readily apparent.

Generate Sequence Number Processing

Generate Sequence Number processing refers to the series of events
that occurs when Oracle Forms interacts with the database to get the
next value from a SEQUENCE object defined in the database.
Although not strictly related to transaction processing, this operation
requires database interaction, and so must be considered when you
implement support for a non–ORACLE data source.

4 – 36 Forms Advanced Techniques

Sequences are often used to generate unique primary key values for
records that will subsequently be inserted in the database. In a form,
you can specify that an item’s default value should be the next integer
from a database sequence by setting the Default property to
:SEQUENCE.my_seq.NEXTVAL.

When a SEQUENCE is used as a default item value, Oracle Forms
queries the database to get the next value from the SEQUENCE
whenever the Create Record event occurs. You can suppress or
override this functionality with an On–Sequence–Number trigger.

In practice, it is unlikely that you would be referencing a SEQUENCE
as a default item value in a non–ORACLE data source application. It is
possible, however, that you would want to implement equivalent
functionality, using values provided by some other source. In this case,
it is often better to perform this operation in a When–Create–Record
trigger.

Lock Record Processing

Lock Record processing refers to the sequence of events that occurs
when Oracle Forms attempts to lock rows in the database that
correspond to queried records in the form. By default, Oracle Forms
attempts to lock a row immediately after an operator modifies an item
value in a queried record; for example, as soon as the operator presses
a key to enter or edit the value in a text item.

When Oracle Forms attempts to lock a row, the On–Lock trigger fires if
present. You can use this trigger to replace or suppress default locking
behavior.

You can also control default locking behavior by setting the Locking
Mode block property, as discussed earlier in this chapter.

Accessing System Date

The default values $$DBDATE$$ or $$DBDATETIME$$ do not work
when you are accessing a non–ORACLE datasource. Instead, use a
When–Create–Record trigger to select the current date in a
datasource–specific manner.

C H A P T E R

5
Y

5 – 1Multiple–Form Applications

Multiple–Form
Applications

ou can build applications by integrating multiple form, menu, and
library modules. This chapter explains how to use multiple form
modules in a single application. It includes the following topics:

• About Multiple–Form Applications 5 – 2

• Invoking Independent Forms with OPEN_FORM 5 – 4

• Replacing the Current Form with NEW_FORM 5 – 9

• Calling Modal Forms with CALL_FORM 5 – 10

• Managing Commit Processing When Using CALL_FORM 5 – 15

• Passing Parameters to Forms 5 – 23

• Integrating Form and Menu Modules 5 – 26

5 – 2 Forms Advanced Techniques

About Multiple–Form Applications

A multiple–form application is one that is designed to open more than one
form during a single Runform session. Every invocation of Runform
begins the same way—by starting a single form module. Once the first
form is loaded into memory and begins execution, it can
programmatically invoke any number of additional forms. Those forms
can, in turn, invoke still other forms. Modular application development
can provide advantages at both design time and during deployment.

When one form programmatically invokes another, Oracle Forms looks
for the new form in the appropriate directory and then loads it into
memory. When you deliver a multiple–form application to end users, all
of the .FMX, .MMX, and .PLL (form, menu, and library) files that will be
called during the session must reside in the working directory or search
path defined for your system.

Invoking Forms

There are three ways that one form can programmatically invoke
another form:

• Execute the OPEN_FORM procedure to open an independent
form.

• Execute the NEW_FORM procedure to replace the current form
with a different form.

• Execute the CALL_FORM procedure to call a modal form.

When one form invokes another form by executing OPEN_FORM, the
first form remains displayed, and operators can navigate between the
forms as desired. An opened form can share the same database session
as the form from which it was invoked, or it can create a separate
session of its own. For most GUI applications, using OPEN_FORM is the
preferred way to implement multiple–form functionality.

When one form invokes another form by executing NEW_FORM, Oracle
Forms exits the first form and releases its memory before loading the
new form. Calling NEW_FORM completely replaces the first form with
the second. If there are changes pending in the first form, the operator
will be prompted to save them before the new form is loaded.

When one form invokes another form by executing CALL_FORM, the
called form is modal with respect to the calling form. That is, any
windows that belong to the calling form are disabled, and operators
cannot navigate to them until they first exit the called form.

5 – 3Multiple–Form Applications

Both OPEN_FORM and CALL_FORM allow you to leave the calling
form displayed. Using this technique, forms can be integrated so tightly
that operators are not aware they are invoking separate forms.

Any locks obtained by a form are maintained across both OPEN_FORM
(in the same session), CALL_FORM and NEW_FORM procedure calls.
Thus, a called form automatically has the same locks as its calling form.

CALL_FORM is an unrestricted procedure, OPEN_FORM and
NEW_FORM are restricted. Therefore, CALL_FORM is valid in Enter
Query mode, while OPEN_FORM and NEW_FORM are not.

Multiple–Form Applications and the Root Window

When you create multiple–form applications with OPEN_FORM or
CALL_FORM, you will usually want to avoid defining a root window in
any forms that will be displayed at the same time.

At runtime, only one root window can be displayed at a time, even in a
multiple–form application. This means that if the first canvas–view
displayed by Form B is a content view assigned to the root window, it
will display in Form A’s root window, rather than in a separate root
window of its own. As a result, Form B’s content view hides any
Form A views already displayed in the root window. For most
multiple–form applications, this is not the desired behavior, and using a
root window should be avoided.

If circumstances require that a root window be used, you can prevent
the second form from hiding the first by making sure that the target
canvas–view displayed by the second form is one of the following:

• a content canvas–view or stacked canvas–view assigned to a
window other than the root window

• a stacked canvas–view assigned to the root window

When the target canvas–view is assigned to a different window, Oracle
Forms displays the second form in a separate window, and the first
form’s root window display remains unchanged.

When the target canvas–view is a stacked canvas–view assigned to the
root window, Oracle Forms displays it in the first form’s root window.
However, if the stacked canvas–view is smaller than the content
canvas–view (usually the case), the first form’s content view will remain
at least partially visible.

5 – 4 Forms Advanced Techniques

Invoking Independent Forms with OPEN_FORM

One form can programmatically open another by executing the
OPEN_FORM built–in, as shown here:

Open_Form(’stocks’);

By default, the opened form is activated immediately and focus is set to
the first navigable item in the form. You can specify this default
behavior explicitly by including the optional ACTIVATE parameter in
the call to OPEN_FORM:

Open_Form(’stocks’,ACTIVATE);

If you do not want the opened form to receive focus, call OPEN_FORM
with the NO_ACTIVATE parameter, as shown here:

Open_Form(’stocks’,NO_ACTIVATE);

When you open a form with ACTIVATE specified (the default), focus is
set to the opened form immediately, and any trigger statements that
follow the call to OPEN_FORM are ignored and never execute.

When you open a form with NO_ACTIVATE specified, any trigger
statements that follow the call to OPEN_FORM execute after the opened
form has been loaded into memory and its initial start–up triggers (if
any) have been fired.

Whether you open a form with ACTIVATE or NO_ACTIVATE, any
triggers that would normally fire at form start–up will execute in the
form being opened. This could potentially include Pre–Form,
When–New–Form–Instance, When–New–Block–Instance,
When–New–Record–Instance, and When–New–Item–Instance.

You can close an independent form with the CLOSE_FORM procedure,
as shown here:

Close_Form(’stocks’);

Navigation Between Independent Forms

Navigation between forms in a multiple–form application can occur
when the operator navigates with the mouse, or when a form calls one
of the following navigational procedures:

• GO_FORM

• NEXT_FORM

• PREVIOUS_FORM

5 – 5Multiple–Form Applications

The GO_FORM procedure takes one parameter that specifies the name
of the target form:

Go_Form(’schedule’);

NEXT_FORM and PREVIOUS_FORM navigate to the next or previous
form in the sequence defined by the order the forms were opened at
runtime:

Next_Form;

Previous_Form;

Many triggers fire in response to navigational events, including Pre–
and Post– triggers (Pre–Block, Post–Record, etc.) and
When–New–Instance triggers (When–New–Block–Instance,
When–New–Item–Instance, etc.). When you build an application with
multiple forms, it is important to understand how trigger processing is
affected by navigation.

In a multiple–form application, each open form has one item that is the
current item for that form. If you initiate navigation to an open form
programmatically with GO_FORM, NEXT_FORM, PREVIOUS_FORM,
or EXIT_FORM, the target item is always the current item in the target
form.

For example, when Form A opens and activates Form B, focus is set to
the current item in Form B. If Form B subsequently calls EXIT_FORM or
PREVIOUS_FORM, the focus returns to the current item in Form A––in
this case, the item that was current when Form A opened Form B.

Keep in mind the following points about inter–form navigation:

• When navigating between independent forms, no validation
occurs in the starting form. It is possible to navigate out of a field
that is currently invalid provided that the target field is in a
different form. Upon returning to the starting form and
attempting to navigate within that form, normal validation is
enforced.

• When navigating between independent forms, no triggers fire.
The only exceptions are When–Window–Deactivated, which fires
in the form that initiates navigation, and
When–Window–Activated, which fires in the target form. The
Pre–, Post–, and When–New–Instance triggers do not fire when
navigating between forms.

When the operator navigates from Form A to Form B by clicking with
the mouse, the target item can be either the current item in Form B or an
item other than the current item in Form B.

5 – 6 Forms Advanced Techniques

If the operator clicks on the current item in Form B, no triggers fire. If the
operator clicks on an item other than the current item, only triggers that
would normally fire when navigating from the current item in Form B to
the target item fire, and validation occurs as required. Thus, form
processing proceeds exactly as it would if the operator were navigating
from the current item in Form B to the target item, without regard to any
external forms.

Opening Forms in Different Database Sessions

At runtime, Oracle Forms automatically establishes and manages a
single connection to ORACLE. By default, one user session is created for
this connection. However, the multiple sessioning feature of ORACLE
allows a single client to establish multiple sessions within a single
connection. All of ORACLE’s transaction management and
read–consistency features are implemented at the session level, so
creating multiple sessions allows a single user to have multiple,
independent transactions.

Record locking and read consistency behavior for two forms in different
sessions is the same as it would be for two independent clients with
separate connections. When two independent forms access the same
table, it is possible for one form to obtain a lock that would prevent the
other form from accessing records in the table.

In a multiple–form application, you have the option to create an
independent session whenever one form opens another form with the
OPEN_FORM procedure. By default, Oracle Forms does not issue a
savepoint when you open a form, and the opened form shares the same
session as the form from which it was opened.

The following examples are equivalent, and open a form without
creating a new session:

Open_Form(’stocks’); –– default; NO_SESSION is implicit

Open_Form(’stocks’,ACTIVATE,NO_SESSION) –– explicit; for clarity

To open a form in its own, independent session, call OPEN_FORM with
the SESSION parameter, as shown here:

Open_Form(’stocks’,ACTIVATE,SESSION);

This statement opens the STOCKS form in its own session, and sets
focus to it immediately.

When a COMMIT is initiated in any form, Oracle Forms does validation
and commit processing for each open form that shares the same session
as that form. Forms are processed in the sequence defined by the order
in which they were opened, starting with the form that initiated the

5 – 7Multiple–Form Applications

COMMIT. If an error occurs during commit processing, the input focus
is returned to the form that initiated the COMMIT.

When you call OPEN_FORM with the NO_SESSION parameter (the
default), Oracle Forms does not issue a savepoint for the form as it does
when you use CALL_FORM. If Form A opens Form B, both forms share
the same session. If Form B executes CLEAR_FORM (which does an
implicit ROLLBACK), all of the changes that were made in both Form A
and Form B will be rolled back.

Creating independent sessions is usually appropriate for forms that
access different tables, and that manage transactions that are logically
independent. For example, an order entry form might have a menu
option to invoke an appointment calendar form. If the appointment
calendar is opened in the same session as the order entry form, the
operator will have to commit any changes made to the order entry and
calendar forms at the same time. If, however, the calendar form is
opened in a separate session, the operator can enter a new appointment
and save it to the database independently, without having to commit in
the order entry form.

Note: Oracle Forms Runform must be running with the Session option
turned On when you execute OPEN_FORM with the session_mode
parameter set to SESSION. If the Session option is Off, Oracle Forms
issues an error and does not open the indicated form. You can set
session On for all Runform invocations by setting the
FORMS45_SESSION environment variable to TRUE. When you set the
FORMS45_SESSION variable, all Runform invocations inherit its setting,
unless you override the environment variable by setting the Session
option from the Runform command line.

Opening Multiple Instances of the Same Form

It is common in multiple–form applications to allow operators to open
multiple instances of the same form. This technique is useful for
applications that allow operators to perform similar functions on
different record sets, particularly when it is useful for each form to be
managed within a separate transaction session.

When you programmatically open the same form n times, you have n
instances of that form displayed on the screen and stored in memory.
When you need to refer to a specific instance of a form, for example,
when calling GO_FORM or CLOSE_FORM, you must use the internally
stored ID of the form instance, rather than the name of the form (which
is common to all instances of the same form).

5 – 8 Forms Advanced Techniques

Once a form has been opened, you can obtain its internal ID with the
built–in FIND_FORM function:

DECLARE
 form_id FormModule;
BEGIN
 Open_Form(’stocks’,NO_ACTIVATE);
 form_id := Find_Form(’stocks’);
 :GLOBAL.formid := To_Char(form_id.id);
END;

In this example, a variable of type FormModule is declared.
(FormModule is one of the native Oracle Forms types.) Once the
STOCKS form is opened, its internal ID is assigned to the variable by
calling the FIND_FORM function. Then, the instance identifier is
converted to CHAR and assigned to a global variable with the syntax:

:GLOBAL.formid := To_Char(form_id.id);

Once you have stored the instance identifier in a global variable, you can
retrieve it at any time for operations on the specific form instance. The
following example passes the instance identifier to the built–in
procedure GO_FORM:

DECLARE

 form_id FormModule;

BEGIN

 form_id.id := To_Number(:GLOBAL.formid);

 Go_Form(form_id);

END;

The GO_FORM procedure takes a parameter of type FormModule, so
the first step is to declare a variable of that type to hold the instance ID
currently held in the global variable. Notice also that the instance
identifier must be cast to NUMBER to be a valid FormModule value.

By combining the use of global variables with the built–in COPY
procedure, you can store the instance identifier for several different
forms, as shown here:

DECLARE

 form_id FormModule;

 temp CHAR(10);

BEGIN

 –– Initialize a counter, open the STOCKS form, and

 –– store its internal ID in form_id

 ––

 Default_Value(’1’,’GLOBAL.counter’);

 Open_Form(’stocks’,NO_ACTIVATE);

 form_id := Find_Form(’stocks’);

 ––

 –– The Copy() procedure reads only global variables

5 – 9Multiple–Form Applications

 –– and item values, so put the instance identifier in

 –– in a a temporary global variable

 ––

 :GLOBAL.temp_var := To_Char(form_id.id);

 ––

 –– Now assign the ID to the next occurrence of the global

 –– variable :GLOBAL.form<x>, where x is the counter value

 ––

 Copy(Name_In(’GLOBAL.temp_var’),

 ’GLOBAL.form’||:GLOBAL.counter);

 :GLOBAL.counter := To_Number(:GLOBAL.counter)+1;

END;

This example creates a set of global variables (:GLOBAL.form1,
:GLOBAL.form2 ... GLOBAL.formn) which contain the instance
identifiers for each open form. You can then use the appropriate variable
for programmatic operations on a specific form.

Replacing the Current Form with NEW_FORM

You can replace the current form in an application by executing the
NEW_FORM built–in procedure. The following specification shows the
formal parameters for NEW_FORM:

New_Form(formmodule_name CHAR

[,rollback_mode NUMBER,

 query_mode NUMBER,

 parameterlist_name CHAR]);

If you leave the optional parameters unspecified, Oracle Forms runs the
new form using the defaults for those parameters. Hence,

New_Form(’form_B’);

is logically equivalent to

New_Form(’form_B’,TO_SAVEPOINT,NO_QUERY_ONLY);

If the calling form was itself a called form invoked with the
CALL_FORM procedure, the new form assumes the parent form’s
position in the call stack. Further, Oracle Forms runs the new form with
the same CALL_FORM parameters (HIDE or NO_HIDE, DO_REPLACE
or NO_REPLACE, and QUERY_ONLY or NO_QUERY_ONLY) as the
calling form.

5 – 10 Forms Advanced Techniques

Calling Modal Forms with CALL_FORM

One form can programmatically invoke, or call, another form by
executing the CALL_FORM built–in procedure. For example, Form A
can invoke Form B with the following procedure call:

Call_Form(’form_B’);

CALL_FORM loads the indicated form while leaving the calling form
loaded. For example, when Form A calls Form B, Form B becomes the
active form in the session, but Form A remains in memory. If the
operator exits Form B, Form A again becomes the active form. Form B,
in turn, can execute the CALL_FORM procedure to invoke Form C.
When successive forms are loaded via the CALL_FORM procedure, the
resulting module hierarchy is known as the call form stack.

When a form calls another form with CALL_FORM, the called form is
modal with respect to the calling form. Windows that belong to the
calling form are disabled, and operators cannot navigate to them until
the operator exits the called form.

In contrast to the CALL_FORM procedure, NEW_FORM exits the
current form and releases its associated memory before running the new
form at the current position in the call form stack.

The following specification shows the formal parameters and default
values for the built–in procedure CALL_FORM:

Call_Form(formmodule_name CHAR

 [,display NUMBER := HIDE,

 switch_menu NUMBER := NO_REPLACE,

 query_mode NUMBER := NO_QUERY_ONLY,

 parameterlist_name CHAR]);

5 – 11Multiple–Form Applications

The only required parameter is formmodule_name. If you leave the
optional parameters unspecified, Oracle Forms runs the called form
using the default values for those parameters. Hence,

Call_Form(’form_B’);

is logically equivalent to

Call_Form(’form_B’,HIDE,NO_REPLACE,NO_QUERY_ONLY);

When you execute CALL_FORM, you can specify whether the calling
form should remain displayed by passing an appropriate constant for
the display parameter. Valid constants are HIDE (the default) and
NO_HIDE.

The following procedure call invokes Form B and leaves Form A (the
calling form) displayed:

Call_Form(’form_B’,NO_HIDE);

Only the called form is active, and operators cannot navigate to items in
the calling form until they exit the called form.

Exiting from a Called Form

By default, Oracle Forms exits a form when any of the the following
operations occurs:

• EXIT_FORM procedure

• NEW_FORM procedure

• Exit command on the default Action menu

• [Exit/Cancel] key

When a called form exits, control returns to the calling form, and
processing resumes where it left off. This means that the trigger, menu
item command, or user–named routine that executed the CALL_FORM
procedure resumes processing at the statement immediately following
the CALL_FORM procedure call.

Allowing Operators to Quit from a Called Form

It is often desirable to allow operators to quit an application from a
called form, rather than requiring them to explicitly exit each form in the
call stack. You can accomplish this by using a global variable that
indicates whether the operator wants to quit the entire session or return
to the calling form. (Global variables are visible across called forms.)

5 – 12 Forms Advanced Techniques

For example, the called form might have a button labeled QUIT that
allows operators to quit the entire application from a called form. The
When–Button–Pressed trigger for each button sets the value of a global
variable to indicate that the operator wants to either quit the session or
return to the calling form.

When–Button–Pressed Trigger on QUIT button in Called Form B:

:GLOBAL.quit_check := ’quit’;

Exit_Form;

Then, in the calling form, read the value of the global variable
immediately after the CALL_FORM procedure statement:

Trigger Text in Calling Form A:

Call_Form(’form_B’);

/*

** The following statements execute immediately after

** returning from the called form.

*/

IF :GLOBAL.quit_check = ’quit’ THEN

Exit_Form;

END IF;

Calling a Form in Query–Only Mode

When you call a form by executing the built–in procedures
CALL_FORM or NEW_FORM, you can specify whether the called form
should run in normal mode or query–only mode. A form in query–only
mode can query the database but cannot perform inserts, updates, or
deletes.

You specify the query mode for a called form by supplying the
appropriate constant for the query_mode parameter in the CALL_FORM
or NEW_FORM argument list. Valid constants are NO_QUERY_ONLY
(normal mode) and QUERY_ONLY.

For example,

Call_Form(’form_B’,NO_HIDE,NO_REPLACE,QUERY_ONLY);

or

New_Form(’form_B’,TO_SAVEPOINT,QUERY_ONLY);

Note: Oracle Forms runs any form called from a form in query–only
mode as a QUERY_ONLY form, even if the CALL_FORM or
NEW_FORM syntax specifies that the called form is to run in
NO_QUERY_ONLY (normal) mode.

5 – 13Multiple–Form Applications

Using CALL_FORM with OPEN_FORM

When you invoke a modal form by executing CALL_FORM, the calling
form is disabled until the operator exits the called form and returns to
the calling form. When a calling form is disabled, its windows are
grayed out, and operators are unable to set focus to items in the form. A
called form can in its turn call another form. The result is three forms
loaded in memory, only one of which is active and available to the
operator. When successive forms are loaded via the CALL_FORM
procedure this way, the resulting module hierarchy is known as the call
form stack.

When you invoke multiple forms with OPEN_FORM and CALL_FORM
in the same application, there are certain restrictions you should be
aware of:

• Navigation: Any attempt to navigate programmatically to a
disabled form in a call form stack is disallowed.

• Calling Forms: An open form cannot execute the CALL_FORM
procedure if a chain of called forms has been initiated by another
open form.

• Clear All/Rollbacks: When a form is invoked with
CALL_FORM, Oracle Forms issues a savepoint. Any subsequent
ROLLBACK, in any active form, will roll back only changes that
were made since the last savepoint was issued; that is, since the
execution of CALL_FORM.

Restrictions on Navigation Consider the following example. Form A
executes CALL_FORM to call Form B. Form B then executes
OPEN_FORM to open Form C. Form C then opens Form D. Form B then
calls Form E.

5 – 14 Forms Advanced Techniques

Restrictions on Calling Forms At this point in the example, there are
three active, navigable forms (E, C, and D), and two disabled,
non–navigable forms (A and B). Any attempt to navigate
programmatically to Form A or Form B will raise an error.

Together, Form A, Form B, and Form E represent the current call form
stack in the application. If Form C attempted to call a form with
CALL_FORM, an error would occur because of the restriction that an
open form cannot issue a CALL_FORM when there is an existing stack
of called forms that was initiated by another form (Form A, in this
example).

Before Form C can successfully execute CALL_FORM, the operator or
the application would have to exit Form E and return to Form B, then
exit Form B to close out the call form stack.

If Form D exits, focus returns to the form from which Form D was
opened, in this case, Form C. If Form C then exits, focus returns to Form
E, even though Form B originally opened Form C. This is because Form
B is currently disabled as a result of having issued a CALL_FORM to
invoke Form E.

Restrictions on Clear All/Rollback Oracle Forms issues a savepoint
whenever a form executes CALL_FORM to invoke a modal form. When
there are multiple open forms running in the same session, each
transaction event, in any form, is part of the same continuum. This means
that if the operator selects the Clear All command on the default menu,
or any form executes CLEAR_FORM (both of which cause an implicit
ROLLBACK), only changes that have been made since the called form
was invoked (and the savepoint was issued) will be rolled back. Any
changes that happened before that time, in any form, will remain in
effect.

5 – 15Multiple–Form Applications

Managing Commit Processing When Using CALL_FORM

In a multiple–form application, both called forms and calling forms can
issue DML commands to lock records, commit changes, and roll back
posted changes. This section describes concepts and techniques for
managing commit processing across called forms.

Post vs. Commit

If your application requires database transactions to span called forms,
you need to understand the difference between posting and committing.

During a default commit operation, Oracle Forms issues the SQL
statements necessary to update, delete, or insert records that have been
marked in the form as changed, deleted, or inserted. Oracle Forms then
issues the COMMIT statement to commit these transactions in the
database.

Posting consists of writing updates, deletions, and insertions in the form
to the database, but not committing these transactions to the database.
You can explicitly cause Oracle Forms to post without committing by
executing the POST built–in procedure.

When an application executes the POST procedure, Oracle Forms does
all of the default validation and commit processing, but does not issue
the COMMIT statement to finalize these transactions.

Because posted transactions have been written to the database, Oracle
Forms does not have to maintain the status of the affected records across
called forms. More importantly, because these transactions have not
been committed, they can be rolled back programmatically. You can
take advantage of this functionality to manage transactions across called
forms.

What is Post–Only Mode?

When a calling form has pending updates or deletes that have not been
explicitly posted, Oracle Forms runs the called form in post–only mode.
Further, any form called from a form running in post–only mode will
also be in post–only mode.

In post–only mode, no commits or full rollbacks are allowed. Any
attempt to commit returns the message ”FRM–40403: A calling form

has unposted changes. Commit not allowed.” If an operator
makes changes to records in the called form and then issues the default
Exit command, Oracle Forms displays the alert ”Do you want to Post

the changes you have made?” . This functionality exists so that locks

5 – 16 Forms Advanced Techniques

obtained by a calling form are maintained until control is returned to
that form.

Savepoints and Rollbacks

When all of the forms in an application have the Savepoint Mode
property On (the default), Oracle Forms issues a savepoint each time a
form is loaded into memory at form startup, or via NEW_FORM or
CALL_FORM (no savepoint is issued when a form is invoked with
OPEN_FORM). When an application invokes multiple forms, these
savepoints separate database transactions into segments that correspond
to specific form modules.

Because Oracle Forms issues a savepoint for each called form, your
application can post and roll back changes in individual forms without
affecting changes in other forms that were active during the session.

5 – 17Multiple–Form Applications

Rolling Back Changes

The built–in procedures EXIT_FORM and NEW_FORM are similar in
that both result in Oracle Forms leaving the current form; the difference
between them is that while EXIT_FORM merely leaves the current form,
NEW_FORM names another form to be loaded in its place. In both
cases, Oracle Forms must either preserve or roll back changes that were
made in the current form before exiting. In addition to EXIT_FORM and
NEW_FORM, a CLEAR_FORM operation also either preserves or rolls
back changes.

You can control whether changes in a form are preserved or rolled back
when the following operations occur:

• a form executes the EXIT_FORM built–in procedure

• the operator selects the Exit item on the default Action menu (this
is equivalent to calling EXIT_FORM with default parameters)

• a form executes the NEW_FORM built–in procedure

• a form executes the CLEAR_FORM built–in procedure

• the operator selects the Action, Clear All command from the
default menu (this is equivalent to calling CLEAR_FORM with
default parameters)

Whether changes are preserved or rolled back depends on the rollback
mode specified for these operations.

When you call the EXIT_FORM, NEW_FORM, or CLEAR_FORM
procedures, the rollback mode is determined by the constant you supply
for the rollback_mode parameter: TO_SAVEPOINT, NO_ROLLBACK, or
FULL_ROLLBACK.

Rollback Mode Parameters

The TO_SAVEPOINT, NO_ROLLBACK, and FULL_ROLLBACK
parameters are predefined numeric constants, and should be entered
without single quotes, as shown in the following examples:

Clear_Form(ASK_COMMIT,TO_SAVEPOINT);

New_Form(’my_form’,NO_ROLLBACK);

Exit_Form(ASK_COMMIT,FULL_ROLLBACK);

5 – 18 Forms Advanced Techniques

Rollback Parameter Description

TO_SAVEPOINT The default rollback mode. Oracle Forms rolls back
uncommitted changes (including posted changes) to
the last savepoint. If the form is a called form, any
changes that were posted in the calling form are pre-
served. But changes in the current form or locks
acquired are lost.

NO_ROLLBACK Oracle Forms does not issue a rollback, and posted
changes are preserved. (Unposted changes in the
current form are lost.) When calling a new form or
exiting a called form, any locks that were obtained
by the current form remain in effect.

FULL_ROLLBACK Oracle Forms rolls back all uncommitted changes
pending in the current session (including posted
changes). This includes changes made in the current
form, posted changes made in forms that called the
current form, and posted changes made in forms
that were called by the current form.

Note that full rollbacks are not allowed when a form is in post–only
mode, and calling a procedure with the FULL_ROLLBACK parameter
returns an error such as ”FRM–40739: Clear_Form with

FULL_ROLLBACK not allowed in post–only form.”

Default Rollback Mode

The default rollback mode for the CLEAR_FORM, NEW_FORM, and
EXIT_FORM procedures is TO_SAVEPOINT. Hence, the statements

Clear_Form;

New_Form(’form_name’);

Exit_Form

are logically equivalent to

Clear_Form(ASK_COMMIT,TO_SAVEPOINT);

New_Form(’form_name’,TO_SAVEPOINT);

Exit_Form(ASK_COMMIT,TO_SAVEPOINT);

Note: Oracle Forms interprets a ROLLBACK statement in a PL/SQL
block as a CLEAR_FORM built–in procedure with no parameters.

5 – 19Multiple–Form Applications

Modifying the CLEAR ALL and EXIT Commands

The default Oracle Forms menu provides a Clear All command on the
Action menu that allows operators to roll back changes in a form. By
default, the Clear All menu item is functionally equivalent to executing
the CLEAR_FORM procedure with default parameters:

Clear_Form(ASK_COMMIT,TO_SAVEPOINT);

Similarly, the Exit menu item on the Action menu is functionally
equivalent to calling the EXIT_FORM procedure with default
parameters:

Exit_Form(ASK_COMMIT,TO_SAVEPOINT);

Because these menu items map directly to key commands, you can
change their functionality by writing an appropriate Key trigger. For
example, you might want to change the default behavior of the Clear All
menu item to roll back all changes in the session, including changes
posted in calling forms. To do so, you could write the following
Key–CLRFRM (”clear–form”) trigger to cause a full rollback:

Key–CLRFRM Trigger:

Clear_Form(NO_COMMIT,FULL_ROLLBACK);

Similarly, you can change the rollback mode for the Exit menu item to
NO_ROLLBACK, so that changes posted in the current form are not
rolled back on exit. To do so, write the following Key–Exit trigger:

Key–EXIT Trigger:

Exit_Form(ASK_COMMIT,NO_ROLLBACK);

Using Posting and Rollback Mode to Manage Transactions

Although an application can include more than one form module, it can
process only one database transaction at a time. A commit operation in
a form commits updates, inserts, and deletes pending for the entire
application session, rather than for any individual form in the
application. This means that a commit issued by Form B can commit
changes that were posted by Form A. Similarly, a rollback command
can roll back changes that were posted in forms other than the current
form.

When you build an application with multiple forms, you can use
posting and rollback mode to control commit processing across called
forms.

Example 1:
Committing from a

Called Form

5 – 20 Forms Advanced Techniques

Recall that Oracle Forms runs a called form in post–only mode when
there are unposted changes in the calling form. Although post–only
mode is useful in many applications, externalizing it to end–users can
add complexity to your application’s interface. For some applications, it
may be better to prevent forms from running in post–only mode
altogether. To do so, design the application so that changes are always
explicitly posted before another form is called.

To post changes in a form, execute the POST built–in procedure just
prior to calling a form with the CALL_FORM or NEW_FORM
procedure. For example, you can include the POST procedure in the
menu item command or When–Button–Pressed trigger that calls the
next form:

Post;

IF (System.Form_Status <> ’QUERY’) THEN

Call_Form(’form_B’,NO_HIDE);

END IF;

When changes are posted in the calling form, the called form does not
run in post–only mode, and operators can issue a commit from the
called form. The following steps illustrate this sequence, and show how
posting allows a called form to commit changes that were made in the
calling form:

1. Update or delete records in Form A.

2. Post in Form A.

3. Call Form B.

4. Insert, update, or delete records in Form B.

5. Commit in Form B. (This commits the changes made in Form B and
the posted changes in Form A.)

6. Exit Form B.

Checking for Changed Records

When there are no changes to be posted, executing the POST built–in
procedure causes error ”FRM–40405: No changes to post.” To avoid
this error, check the system variable SYSTEM.FORM_STATUS to verify
that at least one record in the form has been validated as CHANGED
before attempting to post, as shown here:

ENTER;

IF System.Form_Status = ’CHANGED’ THEN

Post;

END IF;

Call_Form(’form_B’,NO_HIDE);

Example 2:
Committing from a

Calling Form

5 – 21Multiple–Form Applications

In this example, posting is used to allow a calling form to commit
changes that were posted in a called form.

The called form is allowed to run in post–only mode, and any changes
made in the called form are posted before returning to the calling form.

The following steps illustrate this sequence:

1. Update or delete records in Form A.

2. Call Form B. (Form B is in post–only mode because changes were
made in Form A that were not explicitly posted.)

3. Insert, update, or delete records in Form B.

4. Post in Form B.

5. Exit Form B with NO_ROLLBACK parameter.

6. Commit in Form A. (This commits changes made in Form A and
changes posted in Form B.)

When Form B exits and returns control to Form A (step 5), the rollback
mode is set to NO_ROLLBACK to preserve changes that were posted in
Form B.

Because the default rollback mode when exiting a form is
TO_SAVEPOINT, you must explicitly override this functionality to
avoid a rollback. For example, if the operator selects the Exit item on the
default Action menu, changes made in the called form will be lost. To
override the default Exit command, you might write the following
trigger:

Key–EXIT Trigger:

IF System.Form_Status = ’CHANGED’ THEN

Post;

END IF;

Exit_Form(NO_COMMIT,NO_ROLLBACK);

This same technique can be used when you leave the current form by
executing the NEW_FORM procedure rather than by calling
EXIT_FORM.

IF System.Form_Status = ’CHANGED’ THEN

Post;

END IF;

New_Form(NO_COMMIT,NO_ROLLBACK);

In this case, changes posted by the called form can then be committed by
the new form that takes its place.

5 – 22 Forms Advanced Techniques

Getting Information About the Call Form Stack

You can use the built–in function GET_APPLICATION_PROPERTY to
get information about the call form stack in a multiple–form application,
including the following:

• the name of the current form (CURRENT_FORM)

• the name of the form that called the current form.
(CALLING_FORM).

• the username and password of the current operator
(USERNAME, PASSWORD)

For example, to determine which form called the current form (with
CALL_FORM), you could write the following code:

DECLARE

parent_form CHAR(20) :=Get_Application_Property(CALLING_FORM);

BEGIN

IF parent_form = ’form_A’ THEN

Post;

Exit_Form(NO_COMMIT,NO_ROLLBACK);

ELSE

Commit_Form;

Exit_Form;

END IF;

END;

If the current form is not a called form,

Get_Application_Property(CALLING_FORM);

returns NULL.

Suppressing Post and Commit Transaction Messages

When you build multiple–form applications, you might want to
suppress messages regarding transaction posting and committing. To
do so, set the SYSTEM.MESSAGE_LEVEL system variable to 5 just
before a post or commit, then reset it to the desired value.

5 – 23Multiple–Form Applications

Passing Parameters to Forms

When you invoke a form with the procedures OPEN_FORM,
CALL_FORM, or NEW_FORM, you can pass values for form
parameters from the calling form to the called form.

To pass parameter values from one form to another, each parameter and
its value must be in a parameter list. Parameter lists are internal,
three–column data structures that contain the key (name), the type
(Text_Parameter or Data_Parameter) and the value of each parameter on
the list.

The parameters whose values are being passed must have been defined
in the called form at design time. That is, the called form must be
expecting a value for each of the parameters included in the parameter
list it receives from the calling form.

You can define parameters in a form in the Object Navigator at design
time and also programmatically at runtime. The properties of a
parameter include Name, Datatype, Length, and Default Value.
Parameter lists must be created programmatically with the built–in
routines CREATE_PARAMETER_LIST and ADD_PARAMETER. See
Chapter 16, ”Defining Form Parameters” for more information on form
parameters and parameter lists.

Parameter values are not visible across multiple forms. Thus, even if
there is a parameter named p1 defined in both Form A and Form B, each
form has a separate context, and setting the value of p1 in Form B has no
effect on the value of p1 in Form A. For this reason, parameters are
useful in multiple–form applications primarily as inputs to a form when
it is first invoked.

If your application requires variables whose values are visible across
called forms, you should use global variables. Global variables are
visible across called forms, and remain active until they are explicitly
deleted with the ERASE built–in procedure, or until the session ends.
For information on global variables, see Chapter 18, ”Using PL/SQL in
Oracle Forms,” in the Oracle Forms Developer’s Guide.

5 – 24 Forms Advanced Techniques

Passing a Parameter List

A parameter list is passed from one form to another as the last argument
to the OPEN_FORM, CALL_FORM, or NEW_FORM built–in
procedures:

DECLARE

 the_list PARAMLIST;

BEGIN

 the_list := Create_Parameter_List(’form_a_params’);

 Add_Parameter(the_list,’p1’,TEXT_PARAMETER,’BICYCLE’);

 Open_Form(’form_B’,ACTIVATE,NO_SESSION,the_list);

END;

In this example, a parameter list named form_a_params is created and its
object ID is assigned to a variable named the_list. A text parameter
named p1 is then added to the list with ADD_PARAMETER, and its
value is set to ”BICYCLE.” Finally, the parameter list is passed to
Form B as the last argument to the OPEN_FORM procedure.

For this example to work, a form parameter named p1 must have been
declared in Form B at design time, and its datatype and length must be
compatible with the value being passed.

The Default Parameter List

Each form includes a built–in parameter list named Default. The
Default parameter list contains all of the form parameters that were
defined in the form at design time. For example, if you define
parameters p1, p2, and p3 in Form A at design time, they are
automatically included in the Default parameter list for Form A.

Like any other parameter list, the Default parameter list can be passed to
a called form by including it in the argument list of the OPEN_FORM,
CALL_FORM, or NEW_FORM built–in procedures.

DECLARE

 the_list PARAMLIST:= Get_Parameter_List(’default’);

BEGIN

 Open_Form(’form_B’,ACTIVATE, NO_SESSION,’default’);

END;

5 – 25Multiple–Form Applications

Parameter Validation

When you pass the Default parameter list to a form, remember that each
parameter in the list must have been defined in that form at design time.
Oracle Forms validates the individual parameters against the
parameters defined in that form as follows:

• Each parameter must have been defined in the called form at
design time. If you pass a parameter list that includes an
undefined parameter, the OPEN_FORM, CALL_FORM or
NEW_FORM fails, and Oracle Forms issues error FRM–47023: No

such parameter named <parameter name> exists in <form

module name>.

• The datatype and length of the parameter defined in the called
form must be compatible with the parameter value being passed.
(Values in a parameter list are untyped strings, whereas form
parameters are declared as type CHAR, NUMBER, or DATE.) If
the parameter is incompatible with the value, the OPEN_FORM,
CALL_FORM, or NEW_FORM call fails, and Oracle Forms issues
error FRM–47024: Parameter <parameter name> type does

not match definition in <name of called form>.

You can modify the Default parameter list by adding and deleting
parameters with the built–in procedures ADD_PARAMETER and
DELETE_PARAMETER.

To avoid a validation error, you can remove unwanted parameters from
the list before passing it to a form. For example, if Form B requires only
parameters p1 and p2, you could remove p3 from the list before passing
the list to Form B.

DECLARE

 the_list PARAMLIST:= Get_Parameter_List(’default’);

BEGIN

 Delete_Parameter(the_list, ’p3’);

 Open_Form(’form_B’,ACTIVATE, NO_SESSION,’default’);

END;

5 – 26 Forms Advanced Techniques

Initial Values of Parameters in a Called Form

The following table shows how the initial values of parameters in the
called form are determined by the parameter list being passed by the
calling form with OPEN_FORM, CALL_FORM, or NEW_FORM. It
assumes that there are corresponding parameters in Form A (the calling
form) and Form B (the called form).

If Form A passes... The values of the corresponding parameters in Form
B are set to...

No parameter list The default parameter values that were specified in
Form B at design time. (If no default value was
specified in the Parameter property sheet, parameter
values default to NULL.)

Default parameter list The current values of the corresponding parameters
in Form A.

Programmatically
created parameter list

The values specified for the parameters when they
were put in the parameter list with
ADD_PARAMETER.

Integrating Form and Menu Modules

Just as multiple form modules can be combined into a single
application, so too can multiple menu modules be used as needed. You
can design an application so that several form modules share the same
menu module, or have each form in the application run its own menu.
How menus are loaded in multiple–form applications depends on
whether you are using OPEN_FORM, NEW_FORM, or CALL_FORM.

OPEN_FORM Menu Functionality

When you create multiple–form applications with OPEN_FORM, each
form has its own menu. When the operator navigates between forms,
the menu for the current form becomes the current menu for the
application. Note that on MS Windows, the MDI display style dictates
that the menu for the current form should be displayed on the MDI
application window. This means that as operators navigate between
forms, only the menu for the current form will be displayed.

5 – 27Multiple–Form Applications

NEW_FORM Menu Functionality

When you create multiple–form applications with the NEW_FORM
built–in procedure, Oracle Forms always loads the new form’s menu
module, even if it is the same module used by the calling form.

The only exception to this rule is if the form that executes the
NEW_FORM procedure is itself a called form that was invoked with the
NO_REPLACE parameter. In this case, the new form inherits the
NO_REPLACE restriction, and runs under the calling form’s menu.

CALL_FORM Menu Functionality

When you create multiple–form applications with the CALL_FORM
built–in procedure, the switch_menu parameter determines whether
Oracle Forms loads a different menu or retains the current menu. Valid
constants for the switch_menu parameter include DO_REPLACE and
NO_REPLACE.

The NO_REPLACE parameter (the default) causes Oracle Forms to keep
the current menu module. DO_REPLACE causes Oracle Forms to
replace the current menu module with the menu that was attached to
the called form at design time (either the default Oracle Forms menu or
a custom menu module).

For example,

Call_Form(’form_B’,HIDE,DO_REPLACE);

runs Form B with the menu that was attached to Form B at design time,
rather than keeping the current menu.

Creating a Master Menu

In multiple–form applications, it is common to create a front–end form
that exists only to display the application’s main menu. Items on the
main menu can then invoke individual form modules that perform
specific application functions. To create a master menu that invokes
other forms, first create a form module with no blocks or items, then
attach your master menu module to that form.

Invoking Forms from a Master Menu with OPEN_FORM When items
on a master menu invoke forms with OPEN_FORM, each independent
form has its own menu. You cannot specify that an independent form
use the current menu.

Invoking Forms from a Master Menu with NEW_FORM When items
on the master menu invoke forms with the NEW_FORM built–in

5 – 28 Forms Advanced Techniques

procedure, the menu module attached to each form is loaded when that
form is invoked. When all of the forms in an application share the same
menu, reloading the same menu each time a new form is invoked (and
potentially querying the database each time) may be unacceptable.

To avoid this problem, create a start–up form that exists only to call the
front–end form (and its master menu) by executing CALL_FORM with
the NO_REPLACE parameter.

With this design, Oracle Forms does not reload the menu each time a
different form is invoked from the main menu. Because the front–end
form is itself a called form, any form modules invoked with the
NEW_FORM procedure automatically inherit the NO_REPLACE
restriction, and run under the master menu.

Invoking Forms from a Master Menu with CALL_FORM When items
on the master menu invoke forms with the CALL_FORM built–in
procedure, you can specify whether called forms should inherit the
master menu with the switch_menu parameter (DO_REPLACE or
NO_REPLACE).

Using the REPLACE_MENU Built–in Procedure

You can use the REPLACE_MENU built–in procedure to dynamically
replace the current form’s menu with a different menu:

Replace_Menu(menu_module_name CHAR,

[,menu_type NUMBER := PULL_DOWN

 starting_menu NUMBER,

 group_name CHAR

 use_file BOOLEAN := NULL];

For example, to replace the current menu with a menu called
my_new_menu you could write the following procedure call:

Replace_Menu(’my_new_menu’);

C H A P T E R

6
O

6 – 1Responding to Mouse Events

Responding to Mouse
Events

racle Forms allows you to initiate actions based on mouse events.
This chapter describes the following topics:

• About Mouse Events, Triggers, and System Variables 6 – 2

• Performing Actions Based on the Mouse Button Pressed 6 – 4

• Performing Actions Based on Mouse Location 6 – 5

6 – 2 Forms Advanced Techniques

About Mouse Events, Triggers, and System Variables

There are several mouse events that can occur at runtime. For example,
when an operator clicks the mouse on an item, the item clicked can
signal whether it received a single or a double–click.

You can execute a command or initiate an action whenever one of the
following mouse events occurs:

• operator presses the mouse down

• operator presses the mouse down and releases the mouse button

• operator clicks the mouse

• operator double–clicks the mouse

• operator moves the mouse into a canvas or item

• operator moves the mouse out of a canvas or item

• operator moves the mouse

Mouse Event Triggers

Creating a mouse event trigger to respond to a mouse event allows you
to initiate an action whenever the specified mouse event occurs.

Mouse Trigger Description

When–Mouse–Down Initiates an action when the operator presses
down the mouse button within an item or
canvas–view.

When–Mouse–Up Initiates an action when the operator presses
down and releases the mouse button within an
item or canvas–view.

When–Mouse–Click Initiates an action when the operator clicks the
mouse within an item or canvas–view. Click-
ing the mouse consists of the mouse down and
up events.

When–Mouse–DoubleClick Initiates an action when the operator double–
clicks the mouse within an item or canvas–
view. Double–clicking the mouse consists of
the mouse down, mouse up, mouse click,
mouse down, and mouse up events.

When–Mouse–Enter Initiates an action when the operator moves the
mouse into an item or canvas–view.

6 – 3Responding to Mouse Events

Mouse Trigger Description

When–Mouse–Leave Initiates an action when the operator moves the
mouse out of an item or canvas–view.

When–Mouse–Move Initiates an action when the operator moves the
mouse within an item or canvas–view.

Mouse Event System Variables

When any of the mouse events occur, Oracle Forms initializes the
appropriate mouse event system variable (see below) and executes the
corresponding mouse trigger.

Note: Mouse system variables are set immediately before a mouse
trigger is fired. To guarantee that your mouse system variables are
updated, you should only use the mouse system variables within mouse
triggers.

Mouse Event System Variable Value

SYSTEM.MOUSE_BUTTON_
PRESSED

The number of the button (1–2) that was
pressed. Note: Mouse button support is limit-
ed to buttons 1 and 2 (left and middle) on a
three button mouse. Mouse button 3, or the
right mouse button, is reserved for future pop-
up support.

SYSTEM.MOUSE_BUTTON_
SHIFT_STATE

The shift modifier pressed during the mouse
click.

SYSTEM.MOUSE_ITEM The name of the item the mouse is currently in.

SYSTEM.MOUSE_CANVAS The name of the canvas which the mouse is
currently in.

SYSTEM.MOUSE_X_POS The current mouse X–coordinate on the canvas
according to the coordinate system except
when used within a When–Mouse–Enter trig-
ger.

When using a When–Mouse–Enter trigger,
SYSTEM.MOUSE_X_POS represents the X–
coordinate relative to the item entered, not the
item position on the canvas.

SYSTEM.MOUSE_Y_POS The current mouse Y–coordinate on the canvas
according to the coordinate system except
when used within a When–Mouse–Enter
trigger.

When using a When–Mouse–Enter trigger,
SYSTEM.MOUSE_Y_POS represents the Y–
coordinate relative to the item entered, not the
item position on the canvas.

6 – 4 Forms Advanced Techniques

SYSTEM.MOUSE_RECORD The record number of the record the mouse is
in.

SYSTEM.MOUSE_RECORD_
OFFSET

The offset from the first visible record that the
mouse is in.

Note: Oracle Forms does not perform mouse navigation internally to
fire the mouse triggers. As a result, mouse move, enter, and leave can
fire on the non–current item, or on an item that does not contain a record
(for example, the fifth record in a multi–record block which is in Enter
Query mode).

Performing Actions Based on the Mouse Button Pressed

You can initiate an action based on the button the operator presses,
whether the button pressed is button 1 or 2, a single click or a
double–click; a single click combined with a shift modifier, and so on.

Note: Mouse button support is limited to buttons 1 and 2 (left and
middle) on a three button mouse. Mouse button 3, or the right mouse
button, is reserved for future popup support.

Single or Double–click To perform an action when the operator clicks
or double–clicks the mouse, use either a When–Mouse–Click or a
When–Mouse–DoubleClick trigger.

Button Number Pressed To initiate an action based on the mouse
button pressed, use a When–Mouse–Click trigger in conjunction with
the SYSTEM.MOUSE_BUTTON_PRESSED system variable.

The following example demonstrates how to determine which mouse
button is pressed when the operator clicks the mouse.

/*

** Trigger: When–Mouse–Click

*/

DECLARE

 the_button_pressed VARCHAR(1);

BEGIN

 the_button_pressed := :System.Mouse_Button_Pressed;

 IF the_button_pressed = ’1’ THEN

 Show_Window(’options_window’);

 END IF;

END;

Click Combined with Modifier Key To perform an action based on the
modifier key pressed when the operator clicks the mouse, use the
When–Mouse–Click trigger in conjunction with the
SYSTEM.BUTTON_SHIFT_STATE system variable.

6 – 5Responding to Mouse Events

Performing Actions Based on Mouse Location

You can initiate an action based on the mouse’s current location,
whether the mouse is in an item, record, coordinate area, or
canvas–view.

Mouse in Item To determine which item the mouse is in, use a
When–Mouse–Move trigger in conjunction with the
SYSTEM.MOUSE_ITEM system variable.

Example:

/*
** Trigger: When–Mouse–Move
*/
DECLARE
 mouse_location varchar(50);
BEGIN
 mouse_location := :System.Mouse_Item;
END;

Mouse Coordinates To initiate an action based on the current X and Y
mouse coordinates, use a When–Mouse–Move trigger in conjunction
with the SYSTEM.MOUSE_X_POS and SYSTEM.MOUSE_Y_POS
system variables.

In the following example, the SYSTEM.MOUSE_X_POS and
SYSTEM.MOUSE_Y_POS system variables are used within a
When–Mouse–Click trigger to dynamically reposition items.

DECLARE

 item_to_move VARCHAR(50);

 the_button_pressed VARCHAR(50);

 target_x_position VARCHAR(3);

 target_y_position VARCHAR(3);

BEGIN

/*

** Get the name of the item that was clicked.

*/

 item_to_move := :System.Mouse_Item;

 the_button_pressed := :System.Mouse_Button_Pressed;

6 – 6 Forms Advanced Techniques

/*

** If the mouse was clicked on an area of a canvas that is

** not directly on top of another item, move the item to

** the new mouse location.

*/

 IF item_to_move IS NOT NULL AND the_button_pressed =

 ’2’ THEN

 target_x_position := :System.Mouse_X_Pos);

 target_y_position := :System.Mouse_Y_Pos);

 Set_Item_Property(item_to_move,position,

 target_x_position,target_y_position);

 target_x_position := NULL;

 target_y_position := NULL;

 item_to_move := NULL;

 END IF;

END;

Mouse in Record To perform an action based on the record number the
mouse is in, use When–Mouse–Move or a When–Mouse–Click trigger in
conjunction with the SYSTEM.MOUSE_RECORD system variable.

Mouse in Canvas To perform an action based on the canvas the mouse
is in, use a When–Mouse–Move or a When–Mouse–Click trigger in
conjunction with the SYSTEM.MOUSE_CANVAS system variable.

In the following example, the SYSTEM.MOUSE_CANVAS system
variable is used within a When–Mouse_Move trigger to determine
which canvas the mouse is in.

DECLARE

 canvas_name VARCHAR(50);

BEGIN

 canvas_name := :System.Mouse_Canvas;

END;

To determine which window the mouse is in, add the following line to
the example above:

window_name := :Get_View_Property(canvas_name,window_name);

C H A P T E R

7
T

7 – 1Using Timers

Using Timers

his chapter explains how to create and manipulate timers. It
includes the following sections:

• Creating Timers 7 – 2

• Modifying Timers Programmatically 7 – 5

7 – 2 Forms Advanced Techniques

Creating Timers

A timer is an “internal time clock” that you programmatically create to
perform an action each time the timer expires.

Timer duration can be between 1 and 2,147,483,647 millisecond (1
second=1000 milliseconds). The maximum duration of a timer is
approximately 24.85 days.

When you work with timers you perform these steps:

1. Using the CREATE_TIMER built–in subprogram, create the desired
number of repeating or non–repeating timers.

2. Create a When–Timer–Expired trigger that performs the desired
action whenever your timer expires.

You create a timer by using the CREATE_TIMER built–in subprogram.

CREATE_TIMER(timer_name , milliseconds, iterate);

where:

Specifies the timer name of up to 30 alphanumeric
characters. The name must begin with an
alphabetic character. The datatype of the name is
CHAR.

Specifies the duration of the timer in milliseconds.
The range of values allowed for this parameter is 1
to 2147483648 milliseconds. Values > 2147483648
will be rounded down to 2147483648. Note that
only positive numbers are allowed. The datatype of
the parameter is NUMBER. See Restrictions below
for more information.

Specifies whether the timer should repeat or not
upon expiration. Takes the following constants as
arguments:

REPEAT Indicates that the timer should repeat
upon expiration. Default.

NO_REPEAT Indicates that the timer should not
repeat upon expiration, but is to be used once only,
until explicitly called again.

Note: When–Timer–Expired is a form–level trigger. It fires any time a
timer expires. If your application contains several timers, your
When–Timer–Expired trigger should contain code that will handle the
different timers accordingly.

timer_name

milliseconds

iterate

7 – 3Using Timers

Example:

/* Create a repeating timer that expires every hour */
DECLARE
 hour_timer TIMER;
 one_hour NUMBER(7):=3600000;
BEGIN
 hour_timer:= CREATE_TIMER(’alarm’,one_hour,REPEAT);
END;

Timer Usage Rules

When using timers, consider these usage rules:

• A When–Timer–Expired trigger cannot fire during transactions,
trigger processing, navigation, etc. Thus, a When–Timer–Expired
trigger only fires while Oracle Forms is waiting to accept user
input.

As a result, a timer may not expire exactly on the millisecond, but
it will fire after the specified number of milliseconds.

• By default, a timer repeats on expiration unless you specify
NO_REPEAT.

• When a timer is created, Oracle Forms puts it on a queue.

A When–Timer–Expired trigger will only fire once for each timer
that is on the queue.

• A repeating timer will not repeat while it is on the queue. It will
begin repeating once it has been serviced off of the queue by a
When–Timer–Expired trigger. Thus, only one instance of a timer
may be placed on the expired timer queue at a time.

• If the operator exits an application prior to timer expiration, any
timer on the queue will not be executed by the
When–Timer–Expired trigger.

7 – 4 Forms Advanced Techniques

Responding to Multiple Timers

When working with multiple timers, remember that the
When–Timer–Expired is a form–level trigger. It fires any time a timer
expires. If your application contains several timers, your
When–Timer–Expired trigger should contain code that will handle the
different timers accordingly.

Note: To retrieve the timer name of the most recently executed timer,
initiate a call to GET_APPLICATION_PROPERTY from within a
When–Timer–Expired trigger. Otherwise, the results of the built–in are
undefined.

GET_APPLICATION_PROPERTY(timer_name) returns the name of the
most recently expired timer. Oracle Forms returns NULL in response to
this constant if there is no timer.

Example:

/* Create a When–Timer–Expired trigger that can handle multiple
** application timers.
*/
DECLARE
 expired_timer CHAR(20);
BEGIN
 expired_timer:=GET_APPLICATION_PROPERTY(TIMER_NAME);
 IF expired_timer=’T1’
 THEN /* handle timer T1 */;
 ELSIF expired_timer=’T2’
 THEN /* handle timer T2 */;
 ELSE /* handle all other timers */;
 END IF;
END;

7 – 5Using Timers

Modifying Timers Programmatically

You can use the following built–in subprograms when working with
timers:

• CREATE_TIMER

• DELETE_TIMER

• FIND_TIMER

• GET_APPLICATION_PROPERTY

• SET_TIMER

Note: You cannot change a timer’s name programmatically.

You can use the SET_TIMER built–in subprogram to modify timer
intervals and repeat parameters.

For example:

/*
** Builtin: FIND_TIMER
**
** Example: If the timer exists, reset it. Otherwise create
** it.
*/
PROCEDURE Reset_Timer_Interval(Timer_Name VARCHAR2,
Timer_Intv NUMBER) IS
 tm_id Timer;
 tm_interval NUMBER;
BEGIN
 /*
 ** User gives the interval in seconds, the timer routines
 ** expect milliseconds
 */
 tm_interval := 1000 * Timer_Intv;
 /* Lookup the timer by name */
 tm_id := Find_Timer(Timer_Name);
 /* If timer does not exist, create it */
 IF Id_Null(tm_id) THEN
 tm_id := Create_Timer(Timer_Name,tm_interval,NO_REPEAT);
 /*
 ** Otherwise, just restart the timer with the new interval
 */
 ELSE
 Set_Timer(tm_id,tm_interval,NO_REPEAT);
 END IF;
END;

7 – 6 Forms Advanced Techniques

Deleting a Timer

You can delete repeating and non–repeating timers by using the
DELETE_TIMER built–in subprogram.

You can use the FIND_TIMER and DELETE_TIMER built–in
subprograms to find and delete any timer that is created during the
current session.

Example:

/*
** Builtin: DELETE_TIMER
** Example: Remove a timer after first checking to see if it
** exists
*/
PROCEDURE Cancel_Timer (tm_name VARCHAR2) IS
 tm_id TIMER;
BEGIN
 tm_id:=Find_Timer(tm_name);
 IF NOT Id_Null(tm_id) THEN
 Delete_Timer(tm_id);
 ELSE
 Message(’Timer ’||’ has already been cancelled.’);
 END IF;
END;

C H A P T E R

8
Y

8 – 1Integrating with Other Oracle Tools

Integrating with Other
Oracle Tools

ou can integrate other Oracle tools with Oracle Forms to build
complete applications. This chapter explains how to integrate with
Oracle Reports, Oracle Graphics, and Oracle Book, and includes the
following topics:

• About Integration with Other Oracle Tools 8 – 2

• Calling Other Products from Oracle Forms 8 – 3

• Passing Parameters to Other Products 8 – 5

• Using Chart Items to Embed Oracle Graphics Displays 8 – 8

• The OG Package 8 – 15

• Invoking Forms from 3GL Programs 8 – 22

8 – 2 Forms Advanced Techniques

About Integration with Other Oracle Tools

Oracle Forms supports integration with other Oracle tools, including
Oracle Reports, Oracle Graphics, and Oracle Book. Integrated
applications improve end–user productivity by providing seamless
access to multiple special–purpose tools. For example, an inventory
control system can include data entry capability, integrated reporting
functions, and full–color charts and graphs, all within a single
application.

The primary way to integrate Oracle Forms with other tools is to write
an appropriate form trigger to invoke another tool in response to some
event. When Oracle Forms invokes another product, it can

• Pass command line parameters to the product.

• Pass text parameters to the product.

• Pass record groups to the product that can be used to satisfy
named queries defined in the called product, thus eliminating or
reducing the need for the called product to query records from
the database itself.

When applicable, you can specify that the called product run in batch
or runtime mode, and you can pass command line parameters to
specify runtime options for the called product. Called products can
either run in the background or be displayed alongside the form. For
instance, when a form invokes Oracle Reports, the report can be
displayed on the screen where it can be viewed by the operator, or it
can be sent directly to a printer.

Creating chart items in forms makes possible an additional level of
integration between Oracle Forms and Oracle Graphics. A chart item is
a special type of form item that is associated with a specific Oracle
Graphics display (chart, graph, or other graphical display). Chart items
can be updated dynamically when required by the application. When
you use chart items, Oracle Forms can pass data to Oracle Graphics for
use in constructing the display, or Oracle Graphics itself can query the
data required. Once Oracle Graphics creates the display, Oracle
Graphics passes the display to Oracle Forms to be displayed in the
form interface.

Another option for integration between Oracle Forms and Oracle
Graphics is OLE2 container support. Oracle Graphics is an OLE2 server
application that can be linked or embedded in a custom OLE item in a
form. Note, however, that OLE container functionality is supported
only on MS Windows, whereas chart item integration, which relies on
the Oracle Tools integration system, is fully portable, and also allows
for bi–directional data passing.

8 – 3Integrating with Other Oracle Tools

Calling Other Products from Oracle Forms

You can invoke other products from Oracle Forms with the
RUN_PRODUCT built–in procedure. The syntax for RUN_PRODUCT
is shown here:

RUN_PRODUCT(product, document, commmode, execmode, location,
 list, display);

For example, to invoke Oracle Reports, you could make the following
call:

Run_Product(REPORTS,’stats’,ASYNCHRONOUS,BATCH,FILESYSTEM);

By default, when you invoke Oracle Reports or Oracle Graphics with
RUN_PRODUCT, the called product logs on to ORACLE using the
current form operator’s USERID.

Oracle Forms uses the parameters you pass to RUN_PRODUCT to
construct a valid command line invocation of the called product.
RUN_PRODUCT takes the following parameters:

Product A numeric constant that specifies the Oracle tool to be
invoked: FORMS, REPORTS, GRAPHICS, or BOOK.

Document Specifies the document or module to be opened by the
called product.

Commmode Specifies the communication mode to be used when
running the called product. Valid numeric constants for this parameter
are SYNCHRONOUS and ASYNCHRONOUS.

• SYNCHRONOUS specifies that control returns to Oracle Forms
only after the called product has been exited. The operator
cannot work in the form while the called product is running.
Synchronous is required when passing a record group to a called
product as a DATA_PARAMETER; for example, when invoking
Oracle Graphics to return an Oracle Graphics display that will
appear in a form chart item.

• ASYNCHRONOUS specifies that control returns to the calling
application immediately, even if the called application has not
completed its display. Do not use ASYNCHRONOUS when
passing a record group to a called product as a
DATA_PARAMETER; for example, when invoking Oracle
Graphics to return an Oracle Graphics display that will appear in
a form chart item.

Execmode Specifies the execution mode to be used when running the
called product, either BATCH or RUNTIME. When you run Oracle
Reports and Oracle Graphics, execmode can be either BATCH or

8 – 4 Forms Advanced Techniques

RUNTIME. When you run Oracle Forms, always set execmode to
RUNTIME.

Location Specifies the location of the document or module you want
the called product to execute, either the file system or the database.

List Specifies the name or ID of a parameter list to be passed to the
called product.

Display Specifies the name of the Oracle Forms chart item that will
contain the display generated by Oracle Graphics.

For more information, refer to the description of RUN_PRODUCT in
the Oracle Forms Reference Manual, Vol. 1.

Suppressing the Logon in Oracle Graphics

By default, when Oracle Forms invokes Oracle Graphics, Oracle
Graphics logs on to ORACLE with the same USERID as the current
form operator. In some cases, it may not be necessary for Oracle
Graphics to log on to ORACLE, for example, when a form queries data
and then passes it to Oracle Graphics by way of a
DATA_PARAMETER. When a form provides the data for all of the
queries in a display, there is no need for Oracle Graphics to query the
database, and the needless logon should be avoided.

You can prevent Oracle Graphics from logging on by passing a text
parameter with key set to LOGON and value set to NO. To do so, use
the ADD_PARAMETER built–in to add the LOGON parameter to the
parameter list being passed to Oracle Graphics, as shown here:

DECLARE

list_id ParamList;

BEGIN

list_id := Create_Parameter_List(’input_params’);

Add_Parameter(list_id,’PRINT’,TEXT_PARAMETER,’YES’);

Add_Parameter(list_id,’COPIES’,TEXT_PARAMETER,’1’);

 –– Now add the LOGON parameter to prevent logon

Add_Parameter(list_id,’LOGON’,TEXT_PARAMETER, ’NO’);

Run_Product(GRAPHICS,’daily_sums’,SYNCHRONOUS, BATCH,

 FILESYSTEM, list_id);

END;

Note: A separate logon is always required if the Oracle Graphics
display executes Data Manipulation Language (DML) commands
against the database.

8 – 5Integrating with Other Oracle Tools

Invoking Oracle Book from Oracle Forms

You can integrate Oracle Forms with Oracle Book to provide online
documentation and context–sensitive help in your form applications.
To invoke Oracle Book, use the RUN_PRODUCT or HOST built–ins to
execute a valid Oracle Book logon.

Oracle Book has hypertext capabilities that allow operators to quickly
navigate through documents by clicking on in–text links to jump to
corresponding targets. You can take advantage of these targets in
Oracle Book documents to implement context–sensitive help systems
for your form applications. For example, a form can invoke an Oracle
Book document and navigate to a specific topic, based on current
application context.

There is an Oracle Book command line parameter called TARGET that
you can set to specify the name of a hypertext target when you invoke
Oracle Book. When you invoke Oracle Book with HOST, you can pass a
value for the TARGET parameter as part of the command line
argument. When you invoke Oracle Book with RUN_PRODUCT, you
can pass the name of the target as a parameter in a parameter list.

Passing Parameters to Called Products

You can pass parameters to products you invoke from Oracle Forms. A
parameter you pass to a called product can be either a text parameter or
a data parameter.

The value of a text parameter is a CHAR string that can represent any
of the following:

• a command line parameter to be used by the called product at
startup; for example, a value for the RUNREP command line
parameter DESTYPE, which indicates the display destination for
the report

• a user–defined parameter defined in Oracle Reports or Oracle
Graphics; for example, a value for a department number
parameter required by a report

• a bind or lexical reference defined in Oracle Reports or Oracle
Graphics; for example, a value for the bind reference :SALARY,
or a value for the lexical reference &MINTOTAL

The value of a data parameter is always the name of a record group
defined in the current form. When Oracle Forms passes a data
parameter to Oracle Reports or Oracle Graphics, the data in the

8 – 6 Forms Advanced Techniques

specified record group can substitute for a query that Oracle Reports or
Oracle Graphics would ordinarily execute to run the report or display.

Note: Passing data parameters is not supported when invoking Oracle
Forms from Oracle Forms.

Creating Parameter Lists

To pass a parameter to a called product you must first
programmatically create a parameter list. A parameter list is simply a list
of parameter names (called keys) and their values. To pass one or more
parameters to a called product, your form must perform the following
steps in a trigger or user–named subprogram:

• execute the CREATE_PARAMETER_LIST built–in function to
programmatically create a parameter list

• execute the ADD_PARAMETER built–in procedure to add one
or more parameters to the parameter list, specifying the key,
type, and value for each parameter being added

• execute the RUN_PRODUCT built–in procedure and include the
ID or name of the parameter list to be passed to the called
product

For more information on parameters and parameter lists, see
Chapter 16, Defining Form Parameters.”

The following example illustrates these steps by creating a parameter
list to be passed to Oracle Reports when running a report called
Daily_Sums.

/* Declare an appropriately typed variable to store

** the parameter list ID

*/

DECLARE

list_id ParamList;

BEGIN

/* Create a parameter list named ”input_params” */

list_id := Create_Parameter_List(’input_params’);

/* Add two parameters to the list that pass values

** for RUNREP command line parameters; for each parameter

** specify its key, type (text or data), and value

*/

Add_Parameter(list_id,’DESTYPE’,TEXT_PARAMETER,’PRINTER’);

Add_Parameter(list_id,’DESNAME’,TEXT_PARAMETER,’PS_3’);

8 – 7Integrating with Other Oracle Tools

/* Now run the report, referencing the parameter list ID

** in the last argument to the RUN_PRODUCT procedure */

Run_Product(REPORTS,’daily_sums’,SYNCHRONOUS,RUNTIME,

 FILESYSTEM,list_id);

END;

Parameter Attributes When you add call ADD_PARAMETER to add a
parameter to a parameter list, you specify three attributes:

The name of the parameter.

The parameter type, either DATA_PARAMETER or
TEXT_PARAMETER.

The parameter value. For a TEXT_PARAMETER,
the value is any CHAR value. For a
DATA_PARAMETER, the value is always the
CHAR name of a record group defined in the
current form.

Parameter Associations When you execute the RUN_PRODUCT
procedure and pass a parameter list to another product, Oracle Forms
uses the parameters in the list to construct a valid command line
invocation for the called product. Any text parameters in the list are
interpreted as either pre–defined command line parameters, or as
user–defined bind or lexical parameters. Similarly, any data
parameters are understood to map directly to named queries in Oracle
Reports or Oracle Graphics.

When you pass a parameter to a called product, the parameter key
(that is, the name of the parameter) must be the same as the name of
the corresponding parameter or query in the called product:

• When passing a value for a command line option, the text
parameter key must be the same as the command line keyword
(’DESTYPE’ or ’COPIES’).

• When passing a value for a bind or lexical reference, the text
parameter key must be the same as the name of the bind or
lexical reference.

• When passing data, the data parameter key must have the same
name as the query defined in the called product.

There can be any number of text and/or data parameters in a
parameter list. For example, a form can pass data parameters for any
number of named queries defined in a single report or display.

Note: When you use RUN_PRODUCT to invoke Oracle Reports,
DATA_PARAMETERs can be passed only to master queries. Passing
DATA_PARAMETERs to child queries is not supported.

key

paramtype

value

8 – 8 Forms Advanced Techniques

Note: Passing DATA_PARAMETERs is not supported when invoking
Oracle Forms from Oracle Forms with RUN_PRODUCT.

Using Chart Items to Embed Oracle Graphics Displays

You can create chart items in a form that contain displays generated by
Oracle Graphics. The data used by Oracle Graphics to construct the
display can be derived from a query in the form and then passed to
Oracle Graphics, or Oracle Graphics itself can query the required data
when it creates the display.

Integration between Oracle Forms and Oracle Graphics is based on the
Oracle Tools integration system, making possible full automation of
any chart item container. Applications built with this system are fully
portable across platforms. When an Oracle Graphics display is
embedded in a form, the form has complete control of the display,
including the ability to pass mouse events to the display, as well as
bi–directional parameter and data passing between Oracle Forms and
Oracle Graphics.

These are the main steps to embed an Oracle Graphics display in a
form:

1. In the Oracle Graphics Designer, create the display that you want
to embed in the form.

2. In the form, create a chart item on the desired canvas.

3. Write the trigger that will start the Oracle Graphics batch
executable and open the display. Opening the display starts Oracle
Graphics and populates the chart item in the form.

4. (Optional)Automate the display as desired:

• Pass text parameters or data parameters from the form to Oracle
Graphics that Oracle Graphics can use to update the display.

• Pass text parameters or data parameters from Oracle Graphics to
Oracle Forms.

• Write mouse event triggers to pass mouse events from Oracle
Forms to Oracle Graphics. Oracle Graphics can then update the
display in the chart item, just as it would in Oracle Graphics
runtime.

• Control the display from Oracle Forms by calling Oracle
Graphics procedures from within form triggers.

8 – 9Integrating with Other Oracle Tools

You can use the services in the special OG package to create dynamic
Oracle Graphics displays. The OG package is defined in the OG.PLL
library, which is delivered as part of your Oracle Forms installation. To
call subprograms in the OG package, you need to attach the OG.PLL
library to your form. OG contains the following subprograms:

• OG.OPEN

• OG.CLOSE

• OG.GETCHARPARAM

• OG.GETNUMPARAM

• OG.INTERPRET

• OG.MOUSEDOWN

• OG.MOUSEUP

• OG.REFRESH

Creating a Chart Item

Chart items are special items that display a chart or other layout
display generated by Oracle Graphics. When you create a chart item,
you must also create a display in Oracle Graphics, and then write the
triggers to initialize and populate the chart item at runtime.

You can create a chart item in the Layout Editor or in the Object
Navigator. Because chart items do not store database values, they are
always control items. Many of the properties that apply to other item
types do not apply to chart items.

You can populate a chart item with an Oracle Graphics display by
calling either RUN_PRODUCT or the OG.OPEN procedure available in
the OG.PLL library. Each of these procedures takes an argument that
specifies the name of the chart item that Oracle Graphics should
populate with the indicated display.

Run_Product(GRAPHICS,’og_display’,SYNCHRONOUS,BATCH,FILESYSTEM,

 NULL,’emp.my_chart’);

When you create a chart item, consider the size of the display in Oracle
Graphics and the size of the chart item in the form. When you display a
chart item with RUN_PRODUCT, the display is scaled to fit the
dimensions of the chart item. If the chart item is smaller than the actual
display size, some distortion may occur. When you populate a chart
item with OG.OPEN, you can specify whether the display should be

8 – 10 Forms Advanced Techniques

scaled to fit, or should retain its actual dimensions and be clipped if
necessary.

Fonts, colors, and patterns used to create the display in Oracle
Graphics are matched as closely as possible to the attributes available
on the runtime system.

You can create chart items in both single– and multi–record blocks.
When you use a chart in a multi–record block, you must execute a
separate RUN_PRODUCT, OG.OPEN, or OG.REFRESH call for each
record, that is, for each instance of the chart item.

For example, you might create a multi–record base table block with a
chart item that displays a graph based on the data in each record. You
can build such a form using a block–level Post–Query trigger that
executes a RUN_PRODUCT call for each record retrieved by the query.
(Post–Query fires once for each record retrieved by a query.)

Passing Parameters and Data to Oracle Graphics

A form that contains an embedded chart item can pass parameters to
Oracle Graphics for use in constructing or updating the display
associated with the chart item. For example, when an operator enters a
department number of 10 in a DEPT.DEPTNO field, the form can then
pass that value to Oracle Graphics to use in constructing a bar chart
showing expenses incurred by Department 10 in the last quarter.

You can also pass data parameters to Oracle Graphics. A data
parameter is a pointer to a record group defined in the current form.
Passing data parameters is appropriate when you want Oracle
Graphics to use the results of a query executed in Oracle Forms,
without re–executing the same query.

You can pass a parameter list that includes text and/or data parameters
from Oracle Forms to Oracle Graphics whenever your application
executes any of the following procedures:

• RUN_PRODUCT

• OG.OPEN

• OG.INTERPRET

• OG.MOUSEDOWN

• OG.MOUSEUP

• OG.REFRESH

8 – 11Integrating with Other Oracle Tools

Each of these procedures takes a parameter list ID as its final argument.
Thus, any time you call these procedures in a form you have the option
to send the Oracle Graphics display text or data parameters.

The following example shows two ways to pass parameters when
populating a chart item with an Oracle Graphics display. This example
demonstrates passing parameters with RUN_PRODUCT.

First, a display called sal_chart is created in Oracle Graphics that
compares the salaries paid to managers and line employees in a given
department. A query was defined in Oracle Graphics that accepts a
parameter dept_num that defines the department number to be used in
the WHERE clause of the query.

In the form, the designer created a single–record block based on the
DEPT table, then added a chart item to the block called chart_item.

A When–New–Form–Instance trigger was defined that executes the
following call at form startup:

Og.Open(’sal_chart’,’dept.chart_item’);

The OPEN procedure starts Oracle Graphics in batch mode and
associates the display sal_chart with the chart item dept.chart_item.
When the form operator queries a department record into the form, the
chart item displays the pie chart showing the salary breakdown for
employees in that department.

There are two ways to implement this functionality:

• Pass a text parameter.

The form passes Oracle Graphics a parameter with a value for
the dept_num parameter that was defined in the display; Oracle
Graphics then uses that value to execute the query, builds the
display, and passes it to the form chart item.

• Pass a data parameter.

The form programmatically creates and populates a query record
group, then passes the resulting record set to Oracle Graphics as
a data parameter. The data queried by the form satisfies the
named query defined in the sal_chart display. Oracle Graphics
uses the data to build the display (without querying the
database), then populates the form chart item.

8 – 12 Forms Advanced Techniques

Passing a Text Parameter The following sample code shows the text of
a block–level Post–Query trigger that might be used to pass a
department number to Oracle Graphics for use in constructing the
sal_chart display.

PROCEDURE pass_param IS

pl_id ParamList;

BEGIN

/* Create a parameter list for data passing */

pl_id := Create_Parameter_List(’my_param_list’);

/* Add a text parameter to the list to supply a value for the

** ’dept_num’ parameter that Oracle Graphics is expecting

*/

Add_Parameter(pl, ’dept_num’, TEXT_PARAMETER,

TO_CHAR(:dept.deptno));

/* Call Oracle Graphics to populate the chart item */

Og.Refresh(’sal_chart’,’dept.chart_item’,pl);

/* Get rid of the parameter list */

Destroy_Parameter_List(pl);

END;

Passing a Data Parameter The following sample code shows the text
of a block–level Post–Query trigger that might be used to pass data
records to Oracle Graphics. In this example, Oracle Forms issues a
query and stores the resulting data in a record group. A data
parameter is then passed to Oracle Forms that references the record
group, and Oracle Graphics uses the data to construct the sal_chart
display.

PROCEDURE pass_data IS

val CHAR(20) := ’chart_data’; –– Name of Record Group in form

pl ParamList;

rg RecordGroup;

qry VARCHAR(2000);

stat NUMBER;

BEGIN

/* Prepare a query in a string */

qry := ’SELECT empno, sal FROM emp WHERE deptno=’||

To_Char(:dept.deptno);

/* Try to get the ID of the ’chart_data’ record group */

rg := Find_Group(’chart_data’);

/* If it doesn’t exist, create the group based on the

** query in the ’qry’ string

8 – 13Integrating with Other Oracle Tools

*/

IF Id_Null(rg) THEN

rg := Create_Group_From_Query(’chart_data’,qry);

END IF;

/* Make sure the ’chart_data’ record group is empty */

Delete_Group_Row(rg, ALL_ROWS);

/* Populate the ’chart_data’ record group with the query

** in the ’qry’ string

*/

stat := Populate_Group_With_Query(rg,qry);

/* Create a parameter list for data passing */

pl := Create_Parameter_List(’foo’);

/* Add a data parameter to the parameter list to

** specify the relationship between the named query

** ’query0’ in the Oracle Graphics display and the named

** record group in the form, ’chart_data’.

*/

Add_Parameter(pl,’query0’, DATA_PARAMETER,val);

/* Invoke Oracle Graphics to create the chart */

Og.Refresh(’sal_chart’,’dept.chart_item’,pl);

/*

** Get rid of the parameter list

*/

Destroy_Parameter_List(pl);

END;

Creating a Chart Item that Responds to Mouse Events

You can automate a chart item by allowing operators to update and
manipulate the embedded Oracle Graphics display by clicking on it
with the mouse. For example, operators could be allowed to click on
different parts of a graphical factory floor layout to see status
information about a specific process. Or, they might drill down on a
map to locate the region they wanted to see, with each mouse click
updating the display to show a more granular view.

To create a chart item that operators can manipulate with the mouse,
you must first create a display in Oracle Graphics that responds to the
appropriate mouse events, just as you would if you were constructing
it to run stand–alone in Oracle Graphics runtime.

8 – 14 Forms Advanced Techniques

Once you build the display, you can create the chart item in Oracle
Forms, and then do the following:

• Write a trigger that calls the OG.OPEN packaged procedure to
open the display and prepare it to receive mouse events. (When
you use OG.OPEN, you do not need to call RUN_PRODUCT to
initialize Oracle Graphics.)

OG.Open(’map’,’blk3.chart_item’);

If you want the display to be visible at form startup, you would
typically call OG.OPEN in a When–New–Form–Instance or
Pre–Form trigger. The display would then be able to receive
mouse events immediately. After that, whenever you wanted
Oracle Graphics to update the chart item, you could call
OG.REFRESH, passing new parameters or data as needed.

If you wanted to defer populating the chart item until some
event occurred, such as the operator executing a query in the
form, you might wait to call OG.OPEN until the appropriate
event trigger fired, such as Post–Query or
When–Button–Pressed.

• Write the appropriate mouse event trigger to respond to mouse
events in the chart item.

Oracle Forms includes a set of mouse event triggers that fire in
response to mouse events, including mouse events that happen
in a chart item. To notify Oracle Graphics that a mouse event has
occurred in a chart item, you need to write an Oracle Forms
mouse trigger that calls either the OG.MOUSEDOWN or
OG.MOUSEUP packaged procedures. These procedures notify
Oracle Graphics that a mouse event occurred, and pass the X,Y
coordinates of the click on the display.

Syntax:

Built–in Type:

Description:

Parameters:

Example:

Syntax:

Built–in Type:

Returns:

Description:

Parameters:

Example:

8 – 15Integrating with Other Oracle Tools

The OG Package

The OG package provides a set of PL/SQL subprograms that you can
use when you are embedding Oracle Graphics displays in Oracle
Forms chart items. The services in the OG package are based on the
portable Oracle Tools integration mechanism, and allow you to create
dynamic chart displays in a form. The OG package is defined in the
OG.PLL library, which is delivered as part of your Oracle Forms
installation. To call subprograms defined in the OG package, you need
to attach the OG.PLL library to your form. For information on
attaching libraries, refer to the Oracle Forms Developer’s Guide, Chapter
20, “Working with Libraries.”

OG.CLOSE

OG.CLOSE(display,item);

procedure

Closes the indicated Oracle Graphics display.

The CHAR name of the display.

The CHAR name of the chart item with which the
display is associated.

OG.Close(’totals.ogd’,’blk3.chart_item’);

OG.GETCHARPARAM

OG.GETCHARPARAM(display,item,param);

Function

VARCHAR2

Returns the current value for the indicated Oracle Graphics CHAR
parameter.

The CHAR name of the display.

The CHAR name of the chart item with which the
display is associated.

The name of the parameter whose value you want
to examine.

:dept.dept_name := OG.GetCharParam(’my_disp.ogd’,
’blk2.chart_item,’deptname’);

display

item

display

item

param

Syntax:

Built–in Type:

Returns:

Description:

Parameters:

Example:

Syntax:

Description:

Built–in Type:

Parameters:

8 – 16 Forms Advanced Techniques

OG.GETNUMPARAM

OG.GETNUMPARAM(display,item,param);

Function

NUMBER

Returns the current value for the indicated Oracle Graphics NUMBER
parameter.

The CHAR name of the display.

The CHAR name of the chart item with which the
display is associated.

The name of the parameter whose value you want
to examine.

:dept.deptno := OG.GetCharParam(’my_disp.ogd’,
’blk2.chart_item,’deptno’);

OG.INTERPRET

OG.INTERPRET(display,item,pls_string) ;
OG.INTERPRET(display,item,pls_string,refresh);

OG.INTERPRET(display,item,pls_string,refresh,plist);

Instructs Oracle Graphics to execute the indicated PL/SQL statement
for the indicated display. The PL/SQL statement can include calls to
Oracle Graphics built–in and user–named subprograms, as well as
anonymous blocks of PL/SQL code.

procedure

The CHAR name of the display.

The CHAR name of the chart item with which the
display is associated.

The PL/SQL statements to execute (type CHAR).
Include the trailing semicolon as required. If you
are issuing more than one statement at a time,
include the appropriate DECLARE, BEGIN, and
END keywords.

Optional BOOLEAN parameter that specifies
whether the chart item display should be updated

display

item

param

display

item

pls_string

refresh

Example:

Syntax:

Built–in Type:

Description:

Parameters:

8 – 17Integrating with Other Oracle Tools

after the PL/SQL statement executes in Oracle
Graphics. Set to TRUE or FALSE. (Default=TRUE.)

Optional; specifies the ID of a parameter list to be
passed to Oracle Graphics. Use a variable of type
PARAMLIST. (Default=TOOLS.null_parameter_
list.)

OG.Interpret(’shop.ogd’,’control.chart2’,’do_update;’,
plist => p1);

OG.MOUSEDOWN

OG.MOUSEDOWN(display,item);
OG.MOUSEDOWN(display,item,x,y);

OG.MOUSEDOWN(display,item,x,y,refres h);

OG.MOUSEDOWN(display,item,x,y,refresh,clickcount);

OG.MOUSEDOWN(display,item,x,y,refresh,clickcount,button);

OG.MOUSEDOWN(display,item,x,y,refresh,clickcount,button,

 constrained);

OG.MOUSEDOWN(display,item,x,y,refresh,clickcount,button,

 constrained,plist);

procedure

Passes a mouse down event from Oracle Forms to the Oracle Graphics
display associated with the indicated chart item. MOUSEDOWN is
typically called from a When–Mouse–Down or When–Mouse–Click
trigger attached to the chart item in Oracle Forms. When a mouse
down event is passed from the form to the display, Oracle Graphics
responds just as it would if the mouse down had occurred in Oracle
Graphics runtime.

By default, OG.MOUSEDOWN passes Oracle Graphics the X,Y display
coordinates of the mouse down event. Specifying these parameters
explicitly is necessary only if you want to override the actual
coordinates.

The CHAR name of the display.

The CHAR name of the chart item with which the
display is associated.

Optional; specifies the X NUMBER coordinate at
which Oracle Graphics should interpret the mouse
click to have occurred. (Default=The actual X
coordinate of the mouse down event.)

plist

display

item

x

Syntax:

Built–in Type:

Description:

8 – 18 Forms Advanced Techniques

Optional; specifies the Y NUMBER coordinate at
which Oracle Graphics should interpret the mouse
click to have occurred. (Default=The actual Y
coordinate of the mouse down event.)

Optional; specifies whether Oracle Graphics should
update the chart item display. Set to TRUE or
FALSE. (Default=TRUE)

Optional; specifies a NUMBER counter for mouse
down events that occur as part of a sequence of
mouse events. For example, a double–click event
includes a mouse down (count 1), a mouse up, a
second mouse down (count 2), and a second mouse
up. (Default=The actual clickcount.)

Optional; specifies a NUMBER corresponding to
the mouse button that Oracle Graphics should
interpret as having been pressed for the mouse
event. (Default=The actual button that was
pressed.)

Optional; specifies whether the mouse click should
be interpreted as having occurred while the SHIFT
key was pressed. Set to TRUE or FALSE.
(Default=FALSE)

Optional; specifies the ID of a parameter list to be
passed to Oracle Graphics. Use a variable of type
PARAMLIST. (Default=TOOLS.null_parameter_
list.)

OG.MOUSEUP

OG.MOUSEUP(display,item);
OG.MOUSEUP(display,item,x,y);

OG.MOUSEUP(display,item,x,y,refresh);

OG.MOUSEUP(display,item,x,y,refresh,button);

OG.MOUSEUP(display,item,x,y,refresh,button,constrained);

OG.MOUSEUP(display,item,x,y,refresh,button,constrained,plist);

procedure

Passes a mouse up event from Oracle Forms to the Oracle Graphics
display associated with the indicated chart item. MOUSEUP is
typically called from a When–Mouse–Up or When–Mouse–Click trigger
attached to the chart item in Oracle Forms. When a mouse up event is

y

refresh

clickcount

button

constrained

plist

Parameters:

8 – 19Integrating with Other Oracle Tools

passed from the form to the display, Oracle Graphics responds just as it
would if the mouse up had occurred in Oracle Graphics runtime.

By default, OG.MOUSEUP passes Oracle Graphics the X,Y display
coordinates of the mouse up event. Specifying these parameters
explicitly is necessary only if you want to override the actual
coordinates.

The CHAR name of the display.

The CHAR name of the chart item with which the
display is associated.

Optional; specifies the X NUMBER coordinate at
which Oracle Graphics should interpret the mouse
click to have occurred. (Default=The actual X
coordinate of the mouse up event.)

Optional; specifies the Y NUMBER coordinate at
which Oracle Graphics should interpret the mouse
click to have occurred. (Default=The actual Y
coordinate of the mouse up event.)

Optional; specifies whether Oracle Graphics should
update the chart item display. Set to TRUE or
FALSE. (Default=TRUE)

Optional; specifies a NUMBER corresponding to
the mouse button that Oracle Graphics should
interpret as having been pressed for the mouse
event. (Default=The actual button that was
pressed.)

Optional; specifies whether the mouse click should
be interpreted as having occurred while the SHIFT
key was pressed. Set to TRUE or FALSE.
(Default=FALSE)

Optional; specifies the ID of a parameter list to be
passed to Oracle Graphics. Use a variable of type
PARAMLIST. (Default=TOOLS.null_parameter_
list.)

display

item

x

y

refresh

button

constrained

plist

Syntax:

Built–in Type:

Description:

Parameters:

Example:

8 – 20 Forms Advanced Techniques

OG.OPEN

OG.OPEN(display,item);
OG.OPEN(display,item,clip);

OG.OPEN(display,item,clip,refresh);

OG.OPEN(display,item,clip,refresh,plist);

procedure

Activates the indicated Oracle Graphics display associated with the
indicated chart item. The OPEN procedure includes a call to the
built–in RUN_PRODUCT, but also allows you to specify additional
parameters to control how Oracle Graphics should be activated. OPEN
is typically called in a When–New–Form–Instance trigger to initialize a
graphics display at form startup.

The CHAR name of the display.

The CHAR name of the chart item with which the
display is associated.

Optional BOOLEAN parameter that specifies
whether Oracle Graphics should scale the chart
display to fit the dimensions of the chart item, or
use the default display size, cropping the display
as needed to fit the chart item. Set to TRUE or
FALSE. (Default=TRUE)

Optional BOOLEAN parameter that specifies
whether the chart item display should be updated.

Optional; specifies the ID of a parameter list to be
passed to Oracle Graphics. Use a variable of type
PARAMLIST. (Default=TOOLS.null_parameter_
list.)

OG.Open(’shop.ogd’,’control.chart2’);

display

item

clip

refresh

plist

Syntax:

Built–in Type:

Description:

Parameters:

8 – 21Integrating with Other Oracle Tools

OG.REFRESH

OG.REFRESH(display,item);
OG.REFRESH(display,item,plist);

procedure

Causes Oracle Graphics to update the bitmap display for the indicated
chart item. Use OG.REFRESH to pass new parameters or data to Oracle
Graphics to use to update a display for a chart item. To call
OG.REFRESH successfully, Oracle Graphics must already have been
initialized through a call to OG.OPEN.

The CHAR name of the display.

The CHAR name of the chart item with which the
display is associated.

Optional; specifies the ID of a parameter list to be
passed to Oracle Graphics. Use a variable of type
PARAMLIST. (Default=TOOLS.null_parameter_
list.)

display

item

plist

8 – 22 Forms Advanced Techniques

Calling Oracle Forms from 3GL Programs

The IFZCAL function allows you to call an Oracle Forms application
from any C language program that is linked to Oracle Forms. The
syntax of the IFZCAL function allows you to specify a standard Oracle
Forms command line. This feature means you can run a form from a
program with the same options that you can use from the command
line.

The prototype and constants for the IFZCAL command are located in
the ifzcal.h file on the medium that contains your Oracle Forms
executables.

Syntax: The following syntax describes the prototype for the IFZCAL()
function:

int ifzcal(char *command_line, int command_length)

where command_line specifies the Oracle Forms Runform command
line, and command_length specifies the number of characters in
command_line.

The following IFZCAL statement runs the ORDER_ENTRY form in
debug mode with the SCOTT username:

ifzcal(”f40run order_entry scott/tiger debug=YES”,40);

Note: If the operator is not logged into ORACLE and the command
line does not invoke the Oracle Forms Login screen, Oracle Forms uses
the userid provided in the IFZCAL call. If the command line does not
provide a userid, Oracle Forms uses any existing OPS$ login. If the
command line provides neither a userid nor an OPS$ login, the Logon
screen displays.

If the operator is not logged on to ORACLE and the command line
invokes the the Oracle Forms Logon screen (logon_screen=YES), Oracle
Forms displays the Logon screen. If the command line provides an
OPS$ login, Oracle Forms uses that logon and ignores any operator
entry. If the command line does provide an OPS$ login, Oracle Forms
uses the userid provided by the operator.

If the operator is logged into ORACLE and the command line does not
invoke the Logon screen, Oracle Forms uses the existing connection
even if a userid is specified on the command line. If the command line
invokes the Logon screen in this case, Oracle Forms ignores any entries
by the operator.

Restrictions: Do not use IFZCAL in a user exit. Doing so can ruin data
structures. To invoke additional forms when Runform is already
running, use OPEN_FORM or CALL_FORM.

C H A P T E R

9
O

9 – 1Designing for Portability

Designing for
Portability

racle Forms applications run on multiple platforms, including both
GUI and character–mode. This chapter describes areas to consider
when developing portable applications, and includes the following
topics:

• About Portability 9 – 2

• Planning 9 – 3

• The Porting Process 9 – 4

• Setting Standards 9 – 5

• Choosing a Form Coordinate System 9 – 6

• Using Colors 9 – 7

• Choosing Fonts 9 – 8

• Using Icons 9 – 10

• Setting Window Size 9 – 10

• Form Functionality 9 – 11

• Character–Mode Considerations 9 – 12

9 – 2 Forms Advanced Techniques

About Portability

Portability is the quest for uniformity in a diverse environment. Ideally,
portability means:

• You can develop an application on one platform, such as a UNIX
workstation, and

• You can run the application transparently (without changes) on
multiple other platforms, such as MS Windows and Macintosh.

In reality, the different ways that various platforms and windowing
systems implement the basics that provide their distinctive ”look and
feel” mean that the distinguishing characteristics of one user interface
may appear differently on another user interface. For example, the
placement and presentation of the Help menu is different on
MS Windows, Macintosh, and Motif.

Portability includes:

• Platform portability: the ability to develop and deploy on
different platforms.

Example: Develop on UNIX, deploy on MS Windows and
Macintosh.

• Device portability (including variations in screen size and
resolution, as well as monochrome/color differences): the ability
to develop and deploy on the same platform, but different
devices.

Example: Develop on MS Windows, deploy on both
 MS Windows large screen, high resolution and MS Windows
small screen, low resolution.

• UI portability: the ability to deploy the same application on GUI
and character–mode devices.

Example: Develop on MS Windows, deploy on MS Windows
and a VT220.

9 – 3Designing for Portability

Planning

A major goal in planning for portability is to anticipate the kinds of user
interfaces on which your system will be deployed over time.

Although this information can be difficult to obtain in advance, you may
find it worthwhile to consider these questions:

• On which platform do you currently develop applications?

• Are you planning to migrate to a different development platform?

• What platform do your forms operators currently use?

• Are there plans to migrate to another range of deployment
interfaces?

For example, a typical development environment might include:

• Forms developers using Motif on large color monitors.

• Sales staff using small–screen MS Windows laptops in the field.

• Forms operators using MS Windows on large–screen
monochrome monitors.

To help you plan for developing cross–platform applications, obtain the
platform–specific Installation Guide for each platform you’re using.

9 – 4 Forms Advanced Techniques

The Porting Process

The general process for creating portable applications includes these
stages:

1. Create standards for your application to ensure a similar ”look and
feel” both within the application and across platforms.

2. Create the application on the base platform.

3. Copy, re–generate, and run on the target platform, testing for any
areas where adjustment is needed for optimum appearance.

When you port an application, you will be able to run it directly on
the target platform. The Toolkit level that Oracle Forms is built on
will render all widgets with the native look–and–feel of the target
platform.

However, because of platform–to–platform differences, you may
decide to make some minor changes to your original source code so
that it meets your requirements on both the original and the target
platform.

4. In the Designer, fine–tune the base–platform application.

9 – 5Designing for Portability

Setting Standards

One common approach to designing cross–platform applications is to
start by creating and then refining standards, based on prototyping
efforts and usability testing. Because each company’s requirements are
unique, the best standards for your company will also be unique.

Consider developing three types of standards:

• Coding standards, including naming standards for all objects and
files.

• GUI standards, including standards for screen appearance, such
as color, spacing and layout, as well as standards for specific GUI
objects, such as buttons and check boxes.

• Usage standards, including look–and–feel standards that ensure
that various parts of the application react to user input in the
same way.

For guidance in setting UI standards, consult the following
platform–specific references:

• MS Windows: The Windows Interface: An Application Design Guide

• Motif: Motif Style Guide

• Macintosh: Macintosh Human Interface Guidelines

Template Forms

In addition to creating a standards document, you may also want to
embody the standards in a template form. Then, instead of starting a
new form, developers open the template form and save it under a new
name. The template form provides a starting point so applications can
be developed according to the standards.

Template forms include anything that may be used across all forms in an
application:

• object groups

• property classes

• toolbars

• libraries that include shareable pre–written, pre–tested
subroutines, such as calculations, validations, and utility routines

Before distributing any templates, be sure to test them on all platforms.

9 – 6 Forms Advanced Techniques

Choosing a Form Coordinate System

The form module property, Coordinate System, controls both the size of
objects and their position on the screen. (That is, width and height of
objects, as well as X and Y coordinates, are interpreted according to the
Coordinate System.) You can set the Coordinate System to Character or
Real. Real coordinate units may be set to inches, centimeters, pixels, or
points.

If you require GUI to character–mode portability and want to optimize
for GUI, set Coordinate System to Real—either inches, centimeters, or
points. These coordinate units are based on measurable distances rather
than number of physical dots, and therefore are more portable than
pixels, which change depending on screen resolution. The Real setting
provides maximum flexibility for proportional fonts, but may require
some fine–tuning to avoid overlapping fields on the character–mode
side.

If you want to optimize for character–mode, set Coordinate System to
Character. This setting provides less flexibility for the proportional fonts
used on GUIs, but lets you line up character cell boundaries exactly.

For this type of application... Set Coordinate System to...

GUI only Real: inches, centimeters, or
points

Character–mode only Character

Mixed character–mode and GUI:

 – Optimize for GUI Real

 – Optimize for character–mode Character

9 – 7Designing for Portability

Using Colors

Because your users spend a significant amount of each day using the
screens you design, you may want to consult with a human factors
engineer for help with choosing colors that are both easy to use and
aesthetically pleasing. Research shows that black text on various
light–colored backgrounds provides the most contrast for users.

You may want to choose three separate light background colors to signal
three categories of information, such as the main window, popup
windows, and small objects such as buttons and LOVs.

To ensure cross–platform consistency, you will want to test the colors
you choose to be sure they are effective on all platforms.

Color coding of fields is only useful if the user is trained in the meaning
of the colors, and uses a monitor that can render them accurately. To
avoid problems with monochrome and character mode terminals:

• Test each color and color combination to make sure that all
widgets and labels are visible on both color and monochrome
monitors.

• Use color redundantly: Color should never be the only cue to a
specific meaning. For example, in an accounting application,
negative amounts might be shown in red, but they should also be
preceded by a minus sign.

Limiting the use of color is essential for portability. Keep in mind the
characteristics of the monitors used to run an application. Code to the
lowest common denominator for size, resolution, depth, and color.

• A 4–bit VGA monitor will limit your selection of color.

• MS Windows GUI objects can use only one of 16 colors, so even
though Oracle Forms provides a 256–color palette, if you want the
background of items like checkboxes to be the same color as the
canvas, choose the canvas color from the MS Windows 16–color
palette.

• If your application must run on both color and monochrome
monitors, use a monochromatic color scheme, with a color palette
such as black, white, light grey, and dark blue.

Another approach is to start with one master template containing all the
application libraries, any standard referenced objects, and the standard
color palette. By using this template as a starting point (use Save As to
give each individual form a new name), each form will include the
standard color palette.

9 – 8 Forms Advanced Techniques

Choosing Fonts

When you develop portable applications, you will want to pay
particular attention to your choice of fonts, for both text items and
boilerplate items.

Check first for availability of the font you plan to use. Is it available on
all the platforms you’re using? Then test your font choices on each
platform. Even fonts with the same name can have a different
appearance on different platforms. For a polished appearance, you’ll
want to choose the font that looks best on each platform. Use font
aliasing to specify font mapping when porting an application from one
platform to another.

In the past, many portable applications used Courier, a
non–proportional font. However, using Courier has several
disadvantages:

• Courier is not available on all platforms (only Geneva and
Chicago are required on Macintosh).

• GUI users may expect proportional fonts and reject
non–proportional fonts.

Recommendation: To meet user expectations for a proportional font,
use:

• MS Windows: MS Sans Serif

• Motif: Helvetica

• Macintosh: Geneva and Chicago

Tip: Remember that using named Visual Attributes to set defaults such
as font and color so that they’ll change from platform to platform works
only for Oracle Forms objects. Boilerplate text, however, remains static.
To specify cross–platform font substitution, use font aliasing. (Use
named Visual Attributes to change colors dynamically at runtime.)

9 – 9Designing for Portability

Font Aliasing

Font aliasing lets you use the uifont.ali file to specify what
cross–platform font substitution you prefer. Each platform will have a
separate uifont.ali file to define font substitution.

Example 1:

You develop on MS Windows using the MS Sans Serif font.
To run on UNIX, add this line to your font alias file :

MS Sans Serif=Helvetica

Example 2:

You develop on UNIX using the Helvetica font.
To run on MS Windows, add this line to your font alias file :

Helvetica=MS Sans Serif

Example 3:

You develop on UNIX using the Helvetica font.
To run on Macintosh, add this line to your font alias file :

Helvetica=Geneva

For more information on font aliasing, refer to your platform–specific
Installation Guide.

9 – 10 Forms Advanced Techniques

Using Icons

Icons can be used to identify windows, menu items, and buttons. While
icons are an essential part of GUI design, they are not inherently
portable, so if you are developing cross–platform applications, you will
want to limit the number of icons.

• Icon files are not portable, so you will need a complete set of icon
files for each platform.

• Image size for all bitmaps must be designed to accommodate the
lowest resolution on the platform. For example, a PC with VGA
resolution will allow fewer pixels for rendering than a PC with
SVGA resolution, so developing in VGA and porting to SVGA
will work better than developing in SVGA and porting to VGA.

• Icons will need to be tested on a platform–by–platform basis.

Setting Window Size

Developing portable applications requires limiting the size of windows.
For example, you may have to keep window size small enough to
accommodate laptop users.

• Applications that must run in character mode should be designed
to support a grid of 80 x 22 cells, plus 2 lines for the console
(message and status area).

• To avoid scrolling, applications that must run on VGA and SVGA
monitors must fit within their respective window size constraints.

9 – 11Designing for Portability

Form Functionality

When you’re building portable applications, you may want to use the
GET_APPLICATION_PROPERTY built–in to return the following
values:

• DISPLAY_HEIGHT

• DISPLAY_WIDTH

• OPERATING_SYSTEM

• USER_INTERFACE

For example, you could use Get_Application_Property
(OPERATING_SYSTEM) to obtain the name of the platform this
application runs on. Then you could use When–New–Form–Instance to
set properties appropriate for the current platform before the form is
used.

Recommendations

To implement portable form functionality, consider the following
recommendations:

• To call Oracle Reports, Oracle Graphics, and Oracle Book, use
RUN_PRODUCT. (Use the HOST built–in only for calling other
external applications.)

• Avoid user exits, which must be re–written or at least
re–compiled for each platform.

• Isolate platform–specific functionality:

– MS Windows: DDE, OLE, and VBX.

– Macintosh: AppleEvents.

• Be aware of differences in Macintosh functionality:

– Only text items are navigable, other items (such as buttons)
are not navigable.

– Text item beveling does not apply (raised and lowered
beveling looks the same).

9 – 12 Forms Advanced Techniques

Character–Mode Considerations

Porting to character mode platforms requires attention to both font and
functionality issues:

• Work within limitations caused by differences between
proportional and non–proportional fonts.

• Use widget mnemonics to substitute for using the mouse to press
buttons, check boxes, and radio buttons (for example, use Alt–P
to press a ”Print” button).

For more information, see the Oracle Forms Reference Manual, Vol. 2,
App. A, ”Compatibility with Prior Versions,” under ”Migration
Strategies.”

Running in Character Mode

Running a character–mode application in Oracle Forms 4.5 does not
require any special conversion. To run an application in character mode,
run the .FMX file from the GUI version using the character–mode
executable.

Example:

f45run custform.fmx scott/tiger

Text Issues in Character Mode

If you are designing on a GUI platform and porting to a character–mode
platform, you will need a strategy to account for the difference between
proportional and non–proportional fonts. To account for the difference,
first count the characters in a prompt, then compute the difference in
length based on the size of a character cell grid, thus making sure you
have that number of cells available to display the prompt.

To approximate the screen layout in character mode, use a monospaced
font, such as Courier, on your GUI platform at design time. (If you use
a proportional font, you’ll find that the spaces between labels and fields
are too large in the bitmapped version, or the labels and fields overlap in
the character mode version.)

9 – 13Designing for Portability

Aligning Boilerplate Text in Character Mode

When you are creating a single application to run in both GUI mode and
character mode, boilerplate text takes up more space in the monospaced
font used in character mode than in the proportional font used in the
GUI.

Example 1: Single record block, labels to the left of text items

When boilerplate text is used for text item labels, most applications call
for the boilerplate text to be right aligned, ending just before the text
item.

To implement this behavior in a portable manner:

1. Multiple–select all boilerplate text in the window.

2. Select Format–>Drawing Options–>Text.

Oracle Forms displays the Text Drawing Options dialog.

3. Select Horizontal Origin: At Right.

Oracle Forms sets a snap point at the right.

4. Select Format–>Alignment–>Right.

Oracle Forms starts at the snap point and allows the text to expand
to the left.

Example 2: Multi–record block, labels above text items

In a multi–record block, most applications call for labels above text items.
To implement this behavior, follow the same steps as above, except
select Horizontal Origin: At Left and Format–>Alignment–>Left.

9 – 14 Forms Advanced Techniques

Properties Restricted to Character Mode Applications

The following properties are limited to character mode applications, or
have special restrictions related to character mode applications:

• Help

• Hint (Menu Item)

• Identification

• Size

• Visual Attribute Type: Character Mode Logical Attribute

C H A P T E R

10
O

10 – 1Object Linking and Embedding (OLE)

Object Linking and
Embedding (OLE)

racle Forms provides support for Object Linking and Embedding
(OLE). This chapter includes the following topics:

• About OLE 10 – 2

• About OLE Objects 10 – 3

• About OLE Servers and OLE Containers 10 – 4

• About the Registration Database 10 – 4

• About OLE Object Activation Styles 10 – 5

• About OLE Automation 10 – 7

• When to Embed and Link OLE Objects 10 – 7

• OLE in Oracle Forms 10 – 8

• Using OLE in the Oracle Forms Designer 10 – 9

• Using OLE in Oracle Forms at Runtime 10 – 11

• Creating an OLE Container in Oracle Forms 10 – 12

• Linking and Embedding OLE Objects 10 – 13

• Displaying OLE Objects 10 – 15

• Editing OLE Objects 10 – 17

• Converting OLE Objects 10 – 20

10 – 2 Forms Advanced Techniques

About OLE

Oracle Forms supports Object Linking and Embedding(OLE) on the
Microsoft Windows and Macintosh platforms. OLE provides you with
the capability to integrate objects from many application programs into
a single compound document. Compound documents enable you to use
the features from multiple application programs.

An OLE server application creates OLE objects that are embedded or
linked in an OLE container application; OLE containers store and display
OLE objects. Applications can be OLE server applications, OLE
container applications, or both. Oracle Forms is an OLE container
application, and Oracle Graphics and Microsoft Word are examples of
OLE server applications.

An OLE object is embedded or linked in an OLE container, an item in
Oracle Forms. In Oracle Forms, embedded objects become part of the
form module, and linked objects are references from a form module to a
linked source file.

You can modify OLE objects by activating them. Activating an OLE
object provides you access to features from the OLE server application
that originated the OLE object. Embedded objects can be activated with
in–place activation or external activation. Linked objects can only be
activated with external activation.

OLE server applications can create many object classes. The object
classes that an OLE server can create are installed in a registration
database. If a registration database does not already exist, one is created
during installation of an OLE server application. The registration
database contains the object classes that are valid for embedding and
linking into an OLE container in a form module. For instance, Microsoft
Word classes include MS Word 6.0 Document, MS Word 6.0 Picture, and
MS WordArt 2.0.

10 – 3Object Linking and Embedding (OLE)

About OLE Objects

OLE objects are created from OLE server applications. Microsoft Word
is an OLE server application that creates Word document OLE objects.
Another example of an OLE object is a spreadsheet that is created from
Microsoft Excel. OLE objects are embedded or linked in OLE container
applications such as Oracle Forms.

More specifically, Oracle Forms defines an item called OLE container.
An OLE object is embedded or linked into an OLE container in a form
module.

Embedded Objects

An embedded OLE object is created by an OLE server application and is
embedded in an Oracle Forms form module. An embedded object is
stored as part of a form module or as a LONG RAW column in a
database. Embedded objects can be queried as OLE container items.

An example of object embedding is to insert a spreadsheet in an OLE
container of a form module. The spreadsheet is stored as part of the
form module or as a LONG RAW column in a database; there is no
separate source file containing the spreadsheet.

Linked Objects

A linked OLE is created by an OLE server application. A linked object is
stored in a separate source file that is created from an OLE server
application. An image representation of the linked object and the
information about the location of the linked object’s source file is stored
in a form module or as a LONG RAW column in a database. The
content of the linked object is not stored as part of a form module or as a
LONG RAW column in a database; it is retained in a separate file known
as the linked source file.

An example of object linking is to link a word processor document in a
form module. An image of the document appears in the OLE container
of the form module and the location of the document is stored as part of
the form module or as a LONG RAW column in a database.

10 – 4 Forms Advanced Techniques

About OLE Servers and OLE Containers

Applications that support OLE can be OLE servers, OLE containers, or
both. An OLE server application creates OLE objects that are embedded
or linked in OLE containers. Examples of OLE servers are Microsoft
Word and Microsoft Excel.

Unlike OLE server applications, OLE container applications do not
create documents for embedding and linking. Instead, OLE container
applications provide a place to store, display, and manipulate objects
that are created by OLE server applications. Oracle Forms is an example
of an OLE container application.

Many of the options available for manipulating an OLE object in an OLE
container application are determined by the OLE server application. For
instance, options from the OLE popup menu, also known as OLE verbs,
are exposed by the OLE server application. The information contained
in the registration database, such as object classes available for linking
and embedding, also depends on the OLE server application.

About the Registration Database

The registration database stores a set of classes that categorize OLE
objects. The information in the registration database determines the
object classes that are available for embedding and linking in OLE
containers. OLE server applications export a set of classes that become
members of the registration database. Each computer has a single
registration database. If the registration database does not already exist
when an OLE server application is installed, one is created.

A single OLE server application can add many OLE classes to the
registration database. The process of adding classes to the registration
database is transparent and occurs during the installation of an OLE
server application. For instance, when Microsoft Excel is installed,
several classes are added to the registration database; some of the classes
that are installed in the registration database include Excel Application,
Excel Application 5, Excel Chart, Excel Sheet, ExcelMacrosheet, and
ExcelWorkSheet.

10 – 5Object Linking and Embedding (OLE)

About OLE Object Activation Styles

You can activate an OLE object from an Oracle Forms OLE container
with in–place activation or external activation. Activating an OLE object
allows you to have access to features from the OLE server application
that originated the OLE object. In–place activation and external
activation are possible if the OLE server application that originated the
OLE object is accessible by your computer.

Both in–place activation and external activation also depend on the OLE
activation property settings of the OLE container. The OLE activation
property settings are specified in the Oracle Forms Designer. If the OLE
server application is accessible, the activation property settings of the
OLE container determine whether in–place activation or external
activation occurs when an embedded OLE object is activated. Linked
objects can only be activated with external activation; in–place activation
does not apply to linked objects, even if the in–place activation property
is set to True. Activation of an OLE object is possible in the Oracle
Forms Designer and during Oracle Forms runtime.

In–place Activation

In–place activation occurs when an OLE container and its embedded
object remain in place when activated; Oracle Forms remains
surrounding the OLE container. In–place activation is available for
embedded objects, but it is not available for linked objects.

In–place
activation of a
spreadsheet
containing
sales data

When an object is activated, the object appears inside a hatched border.
To deactivate in–place activation, click anywhere outside the hatched
border.

During in–place activation, some menu options of the OLE server
application replace Oracle Forms menu options. If the window

10 – 6 Forms Advanced Techniques

containing the OLE container has a toolbar, in–place activation also
replaces the Oracle Forms toolbar with the OLE server application
toolbar. Replacing menu options and toolbars provide access to features
that are available from the OLE server application. Oracle Forms menu
options and toolbars reappear when you deactivate in–place activation.

External Activation

External activation occurs when an OLE object appears in a separate
window that is opened by an object’s originating OLE server
application. Because an OLE server application starts up with its own
windows, Oracle Forms menu options and toolbars remain intact during
external activation. External activation is available for both embedded
and linked objects.

External
activation of a
spreadsheet
containing
sales data

When an OLE object is activated, the object’s originating OLE server
application is launched, and the OLE object appears in a separate OLE
server application window. The separate window has the menu options
and toolbars of the OLE server application. To deactivate external
activation, you must explicitly exit the OLE server application.

When the contents of a linked source file is modified with external
activation, a linked object can be updated manually or automatically.
Manual updates require an explicit instruction for an object to reflect
changes from a linked source file. Automatic updates occur as soon as
you modify a linked source file.

10 – 7Object Linking and Embedding (OLE)

About OLE Automation

OLE automation allows an OLE server application to expose a set of
commands and functions that can be invoked from an OLE container
application. OLE automation provides a way for an OLE container
application to use the features of an OLE server application to
manipulate an OLE object from the OLE container environment.

In Oracle Forms, you can use PL/SQL to access any command or
function that is exposed by an OLE server. The OLE2 package provides
a PL/SQL Application Programming Interface for creating,
manipulating, and accessing the commands and functions. For more
information about the OLE2 package, refer to the Oracle Procedure Builder
Developer’s Guide. The OLE2 package documentation is also available in
Oracle Forms online Help.

When to Embed or Link OLE Objects

Whether an OLE object is embedded or linked depends how often an
OLE object is updated, how an OLE object is shared, how the source
document is accessed, and if there are storage constraints.

You should use object embedding when:

• The object that you are embedding does not have to be the most
current version of data because updating is performed from
within a form module instead of a standalone document.

• The object does not need to be included in more than one
document, so that changes are only necessary in the object
embedded in the form module and nowhere else.

• The source document cannot be accessed if the object is linked. In
this case, only a single form module needs to be maintained and
not a form module in addition to the source document.

• The form module size is not a concern, because with embedding,
the size of the form module increases by approximately the size of
the embedded object.

10 – 8 Forms Advanced Techniques

You should use object linking when:

• The object that you are linking has to be the most current version
of data because updating is performed from outside a form
module on a standalone document.

• The object needs to be included in more than one document, so
that changes affect multiple form modules and other documents.

• The source document can always be accessed if the object is
linked.

• The form module size is a concern: Linking, unlike embedding,
does not increase the size of the form module by the size of the
object.

OLE in Oracle Forms

Oracle Forms is an OLE container application that offers the following:

• Embedding and linking of OLE server objects into Oracle Forms
OLE containers.

• In–place activation of embedded contents in Oracle Forms OLE
containers.

• Programmatic access to OLE objects, properties, and methods
through OLE automation support from PL/SQL.

• Seamless storage of OLE objects in a database in LONG RAW
columns.

An OLE container is an item in Oracle Forms. An OLE object is linked
or embedded into an OLE container. OLE objects can be base table items
or control items.

Oracle Forms supports OLE in–place activation. In–place activation
allows you to access menus and toolbars from OLE server applications
to edit embedded OLE objects while you are in Oracle Forms.

Oracle Forms also supports OLE automation. Using PL/SQL, you can
invoke commands and functions that are exposed by OLE servers
supporting OLE automation.

From Oracle Forms, you can save OLE objects to a database, as well as
query OLE objects from a database. OLE objects are saved as LONG
RAW columns in the database. When linked objects are saved, only the
image and the link information are retained in the database. The
contents of a linked object remains in a linked source file. Saving an

10 – 9Object Linking and Embedding (OLE)

embedded object retains all the contents of an embedded object in the
database.

An example of using OLE in Oracle Forms is an application that
integrates Microsoft Word documents with a form module. The
integration of a form module and Microsoft Word document provides
you with access to features from both Oracle Forms and Microsoft Word.
You can format the Microsoft Word document with any of the text
processing features from Microsoft Word, and you can use all of the
Oracle Forms features for displaying and manipulating the data from
the database.

Microsoft
Word
document
embedded in
a form module

The characteristics of an OLE object in Oracle Forms depends on the
properties of the OLE container. OLE container properties determine
how OLE objects are activated, displayed, and manipulated.

Using OLE in the Oracle Forms Designer

The Oracle Forms Designer is where the properties are set for OLE
containers. Although OLE objects are active in both the Designer and at
runtime, the OLE container property values determine OLE
functionality at both design time and runtime.

From the Designer, you determine the criteria for OLE object activation,
representation, and operation by setting the OLE container properties.
For example, when the Show OLE Popup Menu property is set to True,
the OLE popup menu is an option from the Layout Editor of the
Designer and at runtime. The OLE popup menu appears when the
mouse cursor is in the OLE container and the right mouse button is
pressed. When the Show OLE Popup Menu property is set to False, the

10 – 10 Forms Advanced Techniques

OLE popup menu is not an option at runtime. The OLE popup menu
can offer an array of operations that you can use with OLE objects.

From the Designer, you can restrict the object classes for embedding and
linking in an OLE container at runtime. For example, if you specify that
the object class of an OLE container is restricted to the ExcelWorkSheet
class, only a Microsoft Excel worksheet can be an OLE object in the OLE
container. If no object class restriction is specified, any OLE object that is
categorized as an object class in the registration database is a potential
OLE object in the OLE container.

When an OLE container is created, the properties associated with the
OLE container are initially set to default values. The OLE container
properties are divided into the following three groups of properties:

• Activation Properties

• OLE Activation Style

• OLE Do In Out

• OLE In–place Activation

• OLE Popup Menu Properties

• OLE Popup Menu Items

• Show OLE Popup Menu

• OLE Tenant Properties

• OLE Class

• OLE Resize Style

• OLE Tenant Aspect

• OLE Tenant Types

• Show OLE Tenant Type

Activation properties specify whether editing an OLE object is
performed with in–place activation or external activation. OLE popup
menu properties determine if an OLE popup menu is available and
what options appear on the OLE popup menu. OLE Tenant Properties
specify conditions that are required for an OLE object in an OLE
container.

You can manually insert OLE objects in an OLE container from the
Oracle Forms Designer. The OLE object that you insert into an OLE
container adheres to the OLE container property settings. Inserting an
OLE object into an OLE container from the Oracle Forms Designer
initializes the OLE container. The initialization of an OLE container
determines the initial content of the OLE container at runtime. At

10 – 11Object Linking and Embedding (OLE)

runtime, any form query from a LONG RAW column of the database to
populate the OLE container will overwrite the content that is used for
initialization purposes.

Using OLE in Oracle Forms at Runtime

The ability to display and manipulate an object in Oracle Forms at
runtime is determined by the OLE container properties that are defined
in the Oracle Forms Designer. Runtime attributes include activation
style, OLE popup menu options, and OLE tenant properties.

The OLE Tenant Aspect property determines how an OLE object is
viewed. For instance, when the OLE Tenant Aspect property is set to
Icon, any OLE object that you insert in the OLE container appears as an
icon.

At runtime, you can manually insert an OLE object into an OLE
container, or you can query the database for an OLE object to populate
the OLE container. When you manually insert an OLE object at runtime,
the OLE object appears in the OLE container until the next record query.
The OLE object that you insert into an OLE container adheres to the
OLE container property settings. For any subsequent record queries, the
OLE container appears in a state as defined in the Designer or
populated with an OLE object from the database.

You can also query the database for an OLE object to populate an OLE
container. Each record query populates an OLE container with an OLE
object from the database. A query to the database for an OLE object can
only be made for an OLE container item. An OLE object’s data type in
the database is LONG RAW. When queried, an OLE object is displayed
according to the property settings of the OLE container. Similarly, the
operations permitted on the OLE object depend on the property settings
of the OLE container. OLE container properties are not saved as part of
an OLE object.

10 – 12 Forms Advanced Techniques

Creating an OLE Container in Oracle Forms

You can create an OLE container in a form module from the Oracle
Forms Designer. An OLE container is an item in Oracle Forms. When
you create an OLE container, the properties that are associated with the
OLE container are set to default values. You can change the properties
to suit your needs.

The following steps show how to create an OLE container in the Oracle
Forms Designer.

To create an OLE container in the Layout Editor:

1. In the Layout Editor tool palette, select the OLE tool.

2. Position and size the OLE container on the canvas.

3. Set the OLE container properties.

Activation Properties:

OLE Activation Style

OLE Do In Out

OLE In–place Activation

Popup Menu Properties:

OLE Popup Menu Items

Show OLE Popup Menu

OLE Tenant Properties:

OLE Class

OLE Resize Style

OLE Tenant Aspects

OLE Tenant Types

Show OLE Tenant Type

After you create an OLE container, you can insert an OLE object from
the Designer or at runtime. If you want to manually insert an OLE
object, make sure you set the Show OLE Popup Menu property to True
and the Insert Object OLE popup menu option to Display and Enable.

10 – 13Object Linking and Embedding (OLE)

Linking and Embedding OLE Objects

An OLE object that you manually insert into an OLE container from the
Oracle Forms Designer initializes the OLE container for runtime. If you
manually insert an OLE object at runtime, the OLE object appears in the
OLE container until the next record query. For any subsequent record
queries, the OLE container appears in a state as defined in the Designer
or populated with an OLE object from the database.

Embedding Objects

Access to the Insert Object option on the OLE popup menu is necessary
for manual insertion of an OLE object into an OLE container. You can
create a new OLE object to insert into an OLE container, or you can
embed an OLE object from an existing file into an OLE container.

To embed a new OLE object:

1. Create an OLE container with the OLE Tenant Types property set to
Any or Embedded.

Make sure the Show OLE Popup Menu property is True, and the
Insert Object item of the OLE Popup Menu Items is set to Display
and Enable.

2. Move the mouse cursor on the OLE container and press the right
mouse button to access the OLE popup menu. From the OLE popup
menu, choose Insert Object. The Insert Object dialog appears.

3. From the Insert Object dialog, select Create New, choose an object
type from the Object Type list, and click OK. The OLE server
application starts up.

4. Create the object in the OLE server application.

5. Exit the OLE server application.

10 – 14 Forms Advanced Techniques

To embed an object from an existing file:

1. Create an OLE container with the OLE Tenant Types property set to
Any or Embedded.

Make sure the Show OLE Popup Menu property is True, and the
Insert Object item of the OLE Popup Menu Items is set to Display
and Enable.

2. Move the mouse cursor on the OLE container and press the right
mouse button to access the OLE popup menu. From the OLE popup
menu, choose Insert Object. The Insert Object dialog appears.

3. From the Insert Object dialog, select Create from File, and specify
the file name of the object to embed.

You can use the Browse option to help locate the file. If you use the
Browse option, click OK from the Browse dialog after selecting a
file.

4. After you determine the file name, click OK on the Insert Object
dialog.

Linking Objects

Because linked objects contain information about the location of an OLE
object, you can only link OLE objects from existing files. You cannot
create an object when you are trying to link, because the location of new
objects is not yet established.

To link an object:

1. Create an OLE container with the OLE Tenant Types property set to
Any or Linked.

Make sure the Show OLE Popup Menu property is True, and the
Insert Object item of the OLE Popup Menu Items is set to Display
and Enable.

2. Move the mouse cursor on the OLE container and press the right
mouse button to access the OLE popup menu. From the OLE popup
menu, choose Insert Object. The Insert Object dialog appears.

10 – 15Object Linking and Embedding (OLE)

3. From the Insert Object dialog, select Create from File, and specify
the file name of the object to link.

You can use the Browse option to help locate the file. If you use the
Browse option, click OK from the Browse dialog after selecting a
file.

4. Check Link on the Insert Object dialog. After you determine the file
name, click OK on the Insert Object dialog.

Displaying OLE Objects

You can display an OLE object as any of the following:

• the content of the OLE object as it appears in the OLE server

• an icon of the OLE server application that originated the OLE
object

• a thumbnail preview of the OLE object that appears in a reduced
view

10 – 16 Forms Advanced Techniques

You specify the display option with the OLE Tenant Aspect property.
You can also choose Display As Icon on the Insert Object dialog of the
OLE popup menu. When you select Display As Icon, an icon appears in
the OLE container to represent the embedded or linked object. Display
As Icon overrides the value of the OLE Tenant Aspect property.

To display an object as an icon using Display As Icon:

1. Create an OLE container.

2. From the Insert Object dialog, determine the object to embed or link.
Before closing the Insert Object dialog, select Display As Icon.

When you select Display As Icon, the current icon that represents
the OLE server application that originated the OLE object for
insertion is displayed in the Insert Object dialog. Icon selections can
be changed by selecting Change Icon.

The Change Icon dialog shows the current icon selection and the
default icon selection. You can change both the current and default
icon selections by selecting the desired icon. Different icons are
stored in different files. After selecting an icon, click OK from the
Change Icon dialog.

3. From the Insert Object dialog, click OK.

10 – 17Object Linking and Embedding (OLE)

Editing OLE Objects

You can edit an embedded or linked object by activating the OLE object.
Activating an OLE object causes the the OLE server application that
originated the OLE object to start up.

When the OLE server application is not available on your computer for
editing an embedded or linked object, editing can be performed by
permanently or temporarily converting the OLE object to another
format. For more information on OLE object conversion, see the section,
“Converting OLE Objects.”

Editing Embedded Objects

When an embedded object is modified, changes are immediately
reflected in the form module, because embedded objects are stored as
part of the form module.

Editing Linked Objects

When a source file of a linked object is modified, the linked object is
updated automatically or manually. Automatic updates reflect
modifications to an OLE object immediately. Manual updates require
that you select Update Now from the Links dialog after the modification
of a document.

Automatic or manual updating is set in the Links dialog. Through the
Links dialog, you can open a linked source file for editing, change links
of an OLE object to link to other sources, or break links completely.
Broken links leave only a fixed image of an OLE object in an OLE
container; no information about the location of the linked source file is
retained.

10 – 18 Forms Advanced Techniques

To update a linked object automatically:

1. Move the mouse cursor on the OLE container.

Make sure the Show OLE Popup Menu property is True, and the
Links item of the OLE Popup Menu Items is set to Display and
Enable.

2. With the mouse cursor on the OLE container, use the right mouse
button to access the OLE popup menu. From the OLE popup menu,
choose Links. The Links dialog appears.

3. The Links dialog shows the current update option for the selected
linked source file. Select the Automatic radio button that appears
next to the Update label.

4. Click Close to save your changes and exit the Links dialog.

To open a linked source file from the Links dialog:

1. Move the mouse cursor on the OLE container.

Make sure the Show OLE Popup Menu property is True, and the
Links item of the OLE Popup Menu Items is set to Display and
Enable.

2. With the mouse cursor on the OLE container, use the right mouse
button to access the OLE popup menu. From the OLE popup menu,
choose Links. The Links dialog appears.

3. The Links dialog shows the current links to source files. Select a link
to a source file, and select Open Source. The OLE server application
that originated the linked source file starts up. Edit the linked
source file.

10 – 19Object Linking and Embedding (OLE)

4. Exit the OLE server application to save your changes and return to
Oracle Forms.

To change an existing link from one linked source file to another:

1. Move the mouse cursor on the OLE container.

Make sure the Show OLE Popup Menu property is True, and the
Links item of the OLE Popup Menu Items is set to Display and
Enable.

2. With the mouse cursor on the OLE container, use the right mouse
button to access the OLE popup menu. From the OLE popup menu,
choose Links. The Links dialog appears.

3. The Links dialog shows the current links to source files. Select a link
to a source file, and select Change Source. The Change Source
dialog appears. Select another linked source file. Click OK on the
Change Source dialog to establish a new link.

4. Select Close on the Links dialog to return to Oracle Forms.

To break a link to a linked source file:

1. Move the mouse cursor on the OLE container.

Make sure the Show OLE Popup Menu property is True, and the
Links item of the OLE Popup Menu Items is set to Display and
Enable.

2. With the mouse cursor on the OLE container, use the right mouse
button to access the OLE popup menu. From the OLE popup menu,
choose Links. The Links dialog appears.

3. The Links dialog shows the current links to source files. Choose a
link to a source file, and select Break Link. Notice the link is
removed from the Links dialog.

4. Select Close from the Links dialog to return to Oracle Forms.

10 – 20 Forms Advanced Techniques

Converting OLE Objects

You can convert an OLE object from one format to another. OLE object
conversion is used for editing OLE objects when the OLE server
application that originated an OLE object is not available.

The convert option is available on the Object submenu of the OLE
popup menu. You can permanently convert the object to a new format,
or you can temporarily convert the object to a new format for editing
purposes.

Display As Icon in the Convert dialog allows you to display the
converted object as an icon. For more information on displaying an
object as an icon, see the section, “Displaying OLE Objects.”

Converting Embedded Objects

You can convert embedded objects from one format to another.

To convert an embedded object:

1. Move the mouse cursor on the OLE container.

Make sure the Show OLE Popup Menu property is True, and the
Object item of the OLE Popup Menu Items is set to Display and
Enable.

2. With the mouse cursor on the OLE container, use the right mouse
button to access the OLE popup menu. From the OLE popup menu,
choose Convert from the Object submenu. The Convert dialog
appears.

10 – 21Object Linking and Embedding (OLE)

3. The Convert dialog shows the current object type and the
conversion possibilities. Select a conversion object type.

4. Select either Convert To or Activate As. Convert To permanently
alters the format of the object to the selected object type. Activate As
is a temporary conversion that provides a method for editing or
viewing an object when an OLE server application cannot be found.

5. Click OK on the Convert dialog to save changes.

Converting Linked Objects

Because linked object source files are not part of a form module, you
cannot convert linked objects from one format to another in Oracle
Forms. You can only convert linked objects from the source level.

10 – 22 Forms Advanced Techniques

C H A P T E R

11
O

11 – 1VBX Controls

VBX Controls

racle Forms for Microsoft Windows provides support for VBX
controls. This chapter includes the following topics:

• About VBX Controls 11 – 2

• VBX Controls in Oracle Forms 11 – 3

• VBX Controls in the Oracle Forms Designer 11 – 5

• VBX Controls in Oracle Forms at Runtime 11 – 6

• Creating a VBX Control in Oracle Forms 11 – 12

11 – 2 Forms Advanced Techniques

About VBX Controls

VBX controls provide a simple method of building and enhancing user
interfaces. The controls can be used to obtain user input and display
program output. VBX controls were originally developed as extensions
for the Microsoft Visual Basic environment, and include such items as
sliders, grids, and knobs.

The knob is a
VBX control

VBX controls are a special type of dynamic link library distributed on
files with the .VBX extension. A single VBX file can contain many
different VBX controls, and each VBX control is defined by a set of
properties, events, methods, and error messages. Refer to the
documentation that accompanies your VBX control for more
information on properties, events, methods, and error messages.

Although you can develop your own VBX controls for use in Oracle
Forms, developing VBX controls requires a significant amount of effort.
The procedure for developing VBX controls is documented in the
Microsoft Visual Basic Professional Edition Manuals. However, it is
recommended that you use VBX controls developed by third party
vendors.

11 – 3VBX Controls

VBX Controls in Oracle Forms

A VBX control is an item in Oracle Forms. Like other Oracle Forms
items, VBX controls serve as a way to represent and manipulate data
that displays on a form. VBX controls can be base table items or control
items.

VBX Control as an Oracle Forms Item

You can interchange a VBX control with other Oracle Forms items
without affecting your intended use for the item. A text item in Oracle
Forms displays data from the database on a form. A VBX control can
accomplish the same task. For example, a text item displaying the
number 10 can be depicted by a VBX control that is a knob. Both items
can reflect changes in the data from the database. When the number 10
changes to the number 5, the number 5 appears in the text item on the
form, and the knob control redirects its position to represent the number
5.

Both the knob
VBX control
and the
poplist can be
used to make
selections

A VBX control, like some Oracle Forms items, can also be used to input
data. An item on a form can require the entry of a number in the range
from 1 to 10. Using a poplist, you can display the choices on a list for
selection. Similarly, a VBX control that is a knob can be used to provide
choices by turning the knob. Instead of the choices appearing in the
poplist, the choices are depicted by the position of the knob.

11 – 4 Forms Advanced Techniques

VBX controls can be used in place of Oracle Forms items when any of
the following conditions are met:

• A VBX control is the best representation for your data in Oracle
Forms.

• A VBX control is the best method of data input into Oracle Forms.

• You want a simple method of enhancing the user interface to
build professional Oracle Forms applications.

The Value of a VBX Control

Like other items in Oracle Forms, a VBX control can store values such as
the number 10 or the character string ’BLUE’. The value of a VBX
control is derived from the item property, VBX Control Value Property.
Oracle Forms uses the setting of the VBX Control Value Property for
database querying and setting. Use standard PL/SQL bind variable
syntax to set the value of a VBX control.

The value of the VBX Control Value Property can be any one of the
control’s scalar–valued properties. Many scalar–valued properties can
exist for any single VBX control, but not all the properties make sense as
the VBX Control Value Property for a control’s intended use.

Oracle Forms sets the VBX Control Value Property after a VBX control
name is specified. In many cases, a VBX control has a default property
that denotes the value of the control. If there exists a default property
that denotes the value of the control, the default property is set to the
VBX Control Value Property.

For example, the knob VBX control has a property called Value Current.
Value Current is the default property that denotes the value of the knob
control. After selecting to use the knob control, the VBX Control Value
Property is set to the knob control property, Value Current. Other
properties of the knob control, such as Value Initial, Value Maximum, and
Value Minimum, are valid values to assign to the VBX Control Value
Property. However, these VBX control properties may not provide
meaningful data as the VBX Control Value Property.

As previously illustrated, the VBX control that is a knob can be used to
represent a number in a range of values. If you expect the knob control
to represent the current value, Value Current is the appropriate setting
for the VBX Control Value Property. In this scenario, if the VBX Control
Value Property is set to the knob control property Value Minimum, the
knob always represents the minimum value in the range. Although the
Value Minimum knob control property is a valid setting for the VBX
Control Value Property, it is not meaningful in this particular instance.

11 – 5VBX Controls

You can set the VBX Control Value Property from the Oracle Forms
Designer. In addition, you can programmatically get and set the VBX
Control Value Property by using the VBX.GET_VALUE_PROPERTY and
VBX.SET_VALUE_PROPERTY built–in subprograms from the VBX
package in Oracle Forms. For more information on the VBX built–in
subprograms, refer to the Oracle Forms Reference Manual, Vol. 1.

VBX Controls in the Oracle Forms Designer

Use the Oracle Forms Designer to create a VBX control for use with
Oracle Forms. From the Designer, you can see both the Oracle Forms
VBX control properties and VBX control properties.

Oracle Forms VBX Control Properties

Oracle Forms VBX control properties are listed in the Functional section
of the Properties window. Oracle Forms VBX control properties include
VBX Control File, VBX Control Name, and VBX Control Value Property.
For more information on the Oracle Forms VBX control properties, refer
to the Oracle Forms Reference Manual, Vol. 2.

VBX Control Properties

VBX control properties are the properties that are part of a VBX control
definition. VBX control properties vary with each VBX control, although
some properties are common to several VBX controls. For information
about the properties of a particular VBX control, refer to the
documentation for the specific VBX control.

In the Oracle Forms Designer, most of the VBX control properties appear
in the Miscellaneous section of the Properties window. Where possible,
Oracle Forms maps VBX control properties to equivalent Oracle Forms
item properties (many of which are visual attributes). For example, the
VBX control property BackColor is mapped to the Oracle Forms
Background Color property.

The VBX control properties that are mapped to Oracle Forms properties
do not appear in the Miscellaneous section of the Properties window.
Instead, the mapped VBX properties appear in the Properties window as
Oracle Forms properties.

11 – 6 Forms Advanced Techniques

This is a list of VBX properties that are mapped to Oracle Forms
Properties:

VBX Property Oracle Forms Property

BackColor Background Color

Enabled Enabled

FontBold Font Weight

FontItalic Font Style

FontName Font Name

FontSize Font Size

FontStrikeThru Font Style

FontUnderline Font Style

ForeColor Foreground Color

Height Height

Left X Position (in Oracle Forms coordinates)

TabIndex*

TabStop*

Top Y Position (in Oracle Forms coordinates)

Visible Displayed

Width Width

*These properties do not have a one–to–one mapping with Oracle Forms
properties. The properties are handled internally by Oracle Forms and
do not appear in the Properties window.

VBX Controls in Oracle Forms at Runtime

You can interact with VBX controls in Oracle Forms in many ways.
Because VBX controls are defined with a set of properties, events, and
methods, you can decide the behavior of a VBX control in an Oracle
Forms application. You can interact with a VBX control in Oracle Forms
by doing any of the following:

• responding to VBX control events

• firing VBX control events

• getting VBX control properties

• setting VBX control properties

• invoking VBX control methods

Example:

11 – 7VBX Controls

Responding to VBX Control Events

You can define the course of action that takes place following any VBX
control event. For instance, you can increase a value in a field on a form
when the spin button VBX control spins upward. Similarly, you can
decrease a value in a field on a form when the spin button spins
downward. To perform the appropriate action, you must be able to
detect whether a spin button spins upward or downward. You can
determine whether the spin button VBX control spins upward or
downward by responding to the events raised by the spin button VBX
control. In this case, the spin button VBX control raises a SpinUp event
when a button spins upward and a SpinDown event when a button
spins downward. Events vary among VBX controls. For information
about the events of a particular VBX control, refer to the documentation
for the specific VBX control.

To capture a VBX control event:

1. Create a VBX control.

2. Create a When–Custom–Item–Event trigger attached to the VBX
control item.

3. In the When–Custom–Item–Event trigger, read the value of the
system variable SYSTEM.CUSTOM_ITEM_EVENT to determine the
name of the event that fires the trigger.

The When–Custom–Item–Event trigger fires any time a VBX control
event is raised. For instance, the When–Custom–Item–Event trigger
fires when a knob control is turned or a spin button control is
pressed. The system variable SYSTEM.CUSTOM_ITEM_EVENT
stores the VBX control event that triggered the custom item event.
When the spin button control is pressed, either a SpinDown or
SpinUp event is raised. VBX control events are case sensitive.

/*
** TRIGGER: When–Custom–Item–Event

** ITEM: SpinButton VBX Control

** EXAMPLE: Capture events and determine course of action

*/

IF :System.Custom_Item_Event = ’SpinDown’ THEN

:QTY := :QTY – 1;

ELSE

IF :System.Custom_Item_Event = ’SpinUp’ THEN

:QTY := :QTY + 1;

END IF;

END IF:

Syntax:

Example 1:

11 – 8 Forms Advanced Techniques

Firing VBX Control Events

VBX controls raise events in response to runtime interaction. You can
also raise VBX events explicitly in PL/SQL to cause a particular course
of action. For example, you can explicitly raise the VBX ClickIn event of
the knob VBX control.

The event raised by a VBX control can be obtained from the
SYSTEM.CUSTOM_ITEM_EVENT system variable. Some VBX control
events have event parameters. You can obtain VBX control event
parameters from the system variable
SYSTEM.CUSTOM_ITEM_EVENT_PARAMETER. For information on
system variables, refer to the Oracle Forms Reference Manual, Vol. 1.

To fire a VBX control event:

1. Create a trigger or a user–defined subprogram.

2. Call the VBX.FIRE_EVENT built–in subprogram and specify the
VBX control item that should raise the event, and the VBX control
event to raise.

If the VBX control event you want to raise requires event
parameters, you must also specify a parameter list containing the
required event parameters. If the VBX control event to raise does
not require event parameters, the value of the parameter list is
NULL.

VBX.FIRE_EVENT(item_id, event_name, paramlist_id);
VBX.FIRE_EVENT(item_id, event_name, paramlist_name);

VBX.FIRE_EVENT(item_name, event_name, paramlist_id);

VBX.FIRE_EVENT(item_name, event_name, paramlist_name);

/*
** Built–in: VBX.FIRE_EVENT

** Example: Raises AddList event of combo box VBX

** control and adds an entry to the combo box.

** The AddList event requires an event parameter

** –– a value to add to in the combo box.

*/

DECLARE

ItemName VARCHAR2(40) := ’COMBOBOX’;

PL_NAME VARCHAR2(20) := ’EventParam’;

PL_ID PARAMLIST;

BEGIN

PL_ID := Create_Parameter_List(PL_NAME);

Add_Parameter(PL_NAME,’ENTRY’,TEXT_PARAMETER,’BLUE’);

VBX.FIRE_EVENT(ItemName,’AddList’,PL_NAME);

END;

Example 2:

Example 1:

11 – 9VBX Controls

/*
** Built–in: VBX.FIRE_EVENT

** Example: Raises SpinDown event of spin button control.

** The SpinDown event does not require an event

** parameter.

*/

DECLARE

ItemName VARCHAR2(40) := ’SPINBUTTON’;

BEGIN

VBX.FIRE_EVENT(ItemName,’SpinDown’,NULL);

END;

Getting VBX Control Properties

VBX control properties describe the attributes of a VBX control. VBX
properties can be used for many purposes. For example, you can
specify a course of action based on the value of a VBX control property,
or you can set other Oracle Forms properties based on the value of a
VBX control property.

You can programmatically obtain the current setting of a VBX control
property using the VBX.GET_PROPERTY built–in subprogram. For
information about the properties of a particular VBX control, refer to the
documentation for the specific VBX control. For information on the
VBX.GET_PROPERTY built–in subprogram, refer to the Oracle Forms
Reference Manual, Vol. 1.

/*
** Built–in: VBX.GET_PROPERTY

** Example: Uses the VBX.GET_PROPERTY built–in to obtain

** the CURRTAB property of the VBX item named

** TABCONTROL. The property value of CURRTAB is

** returned to the TabNumber variable and is used

** as input in the user–defined Goto_Tab_Page

** subprogram.

** Trigger: When–Custom–Item–Event

*/

DECLARE

TabEvent VARCHAR2(80);

TabNumber CHAR;

BEGIN

TabEvent := :system.custom_item_event;

IF (UPPER(TabEvent) = ’CLICK’) then

TabNumber := VBX.Get_Property(’TABCONTROL’,’CurrTab’);

Goto_Tab_Page(TO_NUMBER(TabNumber));

END IF;

END;

Example 2:

Example 1:

11 – 10 Forms Advanced Techniques

Some VBX control properties are arrays of properties. Like
scalar–valued properties, you can programmatically obtain the current
setting of a VBX control property using the VBX.GET_PROPERTY
built–in subprogram.

/*
** Built–in: VBX.GET_PROPERTY

** Example: Uses the VBX.GET_PROPERTY built–in to obtain an

** indentation value from the Indent property

** array of the VBX control named OUTLINE.

** The Indent property value is returned to the

** IndentVal variable and is used as input to the

** user–defined SetIndent subprogram.

** Trigger: When–Custom–Item–Event

*/

DECLARE

ClickEvent VARCHAR2(80);

IndentVal CHAR;

BEGIN

ClickEvent := :system.custom_item_event;

IF (UPPER(ClickEvent) = ’CLICK’) then

IndentVal := VBX.Get_Property(’OUTLINE’,’Indent[2]’);

SetIndent(TO_NUMBER(IndentVal));

END IF;

END;

Setting VBX Control Properties

VBX control properties describe the attributes of a VBX control. VBX
properties can be used for many purposes. For example, you can
specify a course of action by setting the value of a VBX control property.

You can set a VBX control property from the Designer, or you can
programmatically set the VBX control property using the
VBX.SET_PROPERTY built–in subprogram. For information about the
properties of a particular VBX control, refer to the documentation for the
specific VBX control. For information on the VBX.SET_PROPERTY
built–in subprogram, refer to the Oracle Forms Reference Manual, Vol. 1.

/*
** Built–in: VBX.SET_PROPERTY

** Example: Uses the VBX.SET_PROPERTY built–in to set the

** Index property of the SpinButton VBX control.

** Trigger: When–Button–Pressed

*/

DECLARE

ItemName VARCHAR2(40) := ’SPINBUTTON’;

VBX_VAL_PROP VARCHAR2(40);

VBX_VAL VARCHAR2(40);

Example 2:

11 – 11VBX Controls

BEGIN

IF :System.Custom_Item_Event = ’SpinDown’ THEN

VBX_VAL_PROP := ’Index’;

VBX_VAL := ’5’;

VBX.Set_Property(ItemName,VBX_VAL_PROP,VBX_VAL);

END IF;

END;

Some VBX control properties are arrays of properties. Like
scalar–valued properties, you can programmatically set the VBX control
property using the VBX.SET_PROPERTY built–in subprogram.

/*
** Built–in: VBX.SET_PROPERTY

** Example: Uses the VBX.SET_PROPERTY built–in to set the

** value of an element in the Indent property

** array of the VBX control named OUTLINE.

** Trigger: When–Button–Pressed

*/

DECLARE

ItemName VARCHAR2(40) := ’OUTLINE’;

BEGIN

IF :System.Custom_Item_Event = ’Click’ THEN

Set_Property(ItemName,’Indent[2]’,’5’);

END IF;

END;

Invoking VBX Methods

Some VBX controls include a set of methods as part of their definition.
You can invoke a VBX control method using the
VBX.INVOKE_METHOD built–in subprogram. Depending on the
definition of the method, the appropriate course of action takes place.
For example, you can add an item to a combo box VBX control by
invoking the ADDITEM method. VBX method names are case sensitive.

Example:

11 – 12 Forms Advanced Techniques

For information about the methods of a particular VBX control, refer to
the documentation for the specific VBX control. For information on the
VBX.INVOKE_METHOD built–in subprogram, refer to the Oracle Forms
Reference Manual, Vol. 1.

/*
** Built–in: VBX.INVOKE_METHOD_PROPERTY

** Example: Adds an entry to a combo box. The entry to

** add to the combo box is the first optional argument.

** The position where the entry appears is the second

** optional argument.

*/

DECLARE

ItemName VARCHAR2(40) := ’COMBOBOX’;

BEGIN

VBX.Invoke_Method(ItemName,’ADDITEM’,’blue’,’2’);

END;

Creating a VBX Control in Oracle Forms

You can create a VBX control in the Oracle Forms Designer.

To create a VBX control:

1. In the Layout Editor tool palette, select the VBX control tool.

2. Locate and size the VBX control container on the canvas.

3. Open the Properties window for the VBX control container.

4. Specify the VBX control file name in the VBX Control File field of the
Properties window. You can double–click on the VBX Control File
Property field to browse the file system for .VBX files.

5. Specify the VBX control name in the VBX Control Name field of the
Properties window. Double–click on the VBX Control Name field
for a listing of valid VBX controls. You must explicitly select a VBX
control name even if the VBX control file contains a single VBX
control.

Once you have defined the VBX control, you can associate a trigger
to the VBX control by creating a VBX control item–level
When–Custom–Item–Event trigger. Provide the appropriate
built–in or user–defined program code in the trigger to suit your
needs.

C H A P T E R

12
T

12 – 1Dynamic Data Exchange (DDE)

Dynamic Data
Exchange (DDE)

his chapter provides information on Dynamic Data
Exchange(DDE) in Oracle Forms. The topics covered include:

• About DDE 12 – 2

• Limitations 12 – 2

• Function Overview 12 – 3

• Function Descriptions 12 – 4

• Microsoft Windows Predefined Data Formats 12 – 15

• Exceptions 12 – 16

12 – 2 Forms Advanced Techniques

About DDE

Oracle Forms for Microsoft Windows supports Dynamic Data
Exchange(DDE). DDE is a mechanism by which applications can
communicate and exchange data. DDE client support is a procedural
extension to Oracle Forms for Microsoft Windows. A PL/SQL package
for DDE support, consisting of the functions listed in this chapter,
provides application developers with an Application Programming
Interface(API) for accessing DDE functionality from within PL/SQL
procedures and triggers.

The DDE functions enable Oracle Forms, a DDE client application, to
communicate with DDE server applications in the following ways:

• by importing data

• by exporting data

• by executing commands against the DDE server

Note: The information in this chapter assumes that you have a
working knowledge of DDE, as implemented under Microsoft
Windows.

Limitations

Oracle Forms does not include the following:

• Data linking (advise transaction)

Oracle Forms cannot automatically receive an update notice
when a data item has changed.

• Server support

Oracle Forms cannot respond to commands or requests for data
from a DDE client; Oracle Forms must initiate the DDE
conversation (although data may still be transferred in either
direction).

12 – 3Dynamic Data Exchange (DDE)

Function Overview

As part of the DDE package, the DDE functions available from within
PL/SQL procedures and triggers can be grouped into the following
categories:

• Support functions

• Connect/Disconnect functions

• Transaction functions

• Data type Translation functions

Support Functions

These functions are used to start and stop other DDE Server
applications.

Begins a DDE server application.

Ends a DDE server application.

Focuses a DDE server application.

Connect/Disconnect Functions

These functions are used to connect to and disconnect from DDE server
applications.

Starts a DDE conversation with a DDE
server application.

Ends a DDE conversation with a DDE
server application.

Transaction Functions

These functions are used to exchange data with DDE server
applications.

Executes a command recognized by a DDE
server application.

Supplies information to a DDE server
application.

Requests information from a DDE server
application.

DDE.APP_BEGIN

DDE.APP_END

DDE.APP_FOCUS

DDE.INITIATE

DDE.TERMINATE

DDE.EXECUTE

DDE.POKE

DDE.REQUEST

Syntax:

Parameters:

Returns:

Description:

12 – 4 Forms Advanced Techniques

Data Type Translation Functions

These functions are used to translate DDE data type constants to
strings and back; in addition, DDE.GETFORMATNUM allows users to
register a new data format that is not predefined by Microsoft
Windows. Note that these functions do not translate the data itself (all
DDE data is represented with the CHAR data type in PL/SQL), just
data type constants.

Convert/register a data format string to a
number.

Convert a data format number to a string.

DDE.APP_BEGIN

DDE.APP_BEGIN (Command, Mode)

Parameter Type Description

Command VARCHAR2 command line for
executing a program

Mode PLS_INTEGER application window
starting mode

PLS_INTEGER

Begins a DDE server application program.

In the Command string, the DDE server application program name can
include a path. If the DDE server application name does not include a
path, then the following directories are searched:

• the current directory

• the Windows directory

• the Windows system directory

• the directory containing the executable file for the current task

• the directories listed in the PATH environment variable

• the directories mapped in a network

DDE.GETFORMATNUM

DDE.GETFORMATSTR

Example:

12 – 5Dynamic Data Exchange (DDE)

The DDE server application program name may be followed by
arguments, which should be separated from the application program
name with a space.

You can start the DDE server application in either normal, minimized,
or maximized size with the mode parameter. The application mode
constants for DDE.APP_BEGIN are the following:

Mode Description

DDE.APP_MODE_NORMAL Start application
window in normal size.

DDE.APP_MODE_MINIMIZED Start application
window in minimized
size.

DDE.APP_MODE_MAXIMIZED Start application
window in maximized
size.

This function returns an application identifier that is a PLS_INTEGER.
The application identifier is used in all subsequent calls to
DDE.APP_END and DDE.APP_FOCUS for that application window.

DECLARE

AppID PLS_INTEGER;

BEGIN

/* Start Microsoft Excel with spreadsheet emp.xls loaded. */

AppID := DDE.App_Begin(’C:\excel\excel.exe C:\emp.xls’,

 DDE.APP_MODE_MINIMIZED);

END;

Syntax:

Parameters:

Description:

Restrictions:

Example:

12 – 6 Forms Advanced Techniques

DDE.APP_END

DDE.APP_END (AppID)

Parameter Type Description

AppID PLS_INTEGER Application identifier
that is returned from
DDE.APP_BEGIN

Ends a DDE server application program that DDE_APP_BEGIN starts.

The DDE server application can also be terminated in standard
Microsoft Windows fashion, such as by double–clicking the Control
menu.

To terminate a DDE server application, the DDE server application
must have been previously started by calling DDE.APP_BEGIN.

DECLARE

AppID PLS_INTEGER:

BEGIN

/* Start Microsoft Excel with spreadsheet emp.xls loaded. */

AppID := DDE.App_Begin(’C:\excel\excel.exe C:\emp.xls’

DDE.APP_MODE_NORMAL);

...

/* End Microsoft Excel program. */

DDE.App_End(AppID);

END;

Syntax:

Parameters:

Description:

Restrictions:

Example:

12 – 7Dynamic Data Exchange (DDE)

DDE.APP_FOCUS

DDE.APP_FOCUS (AppID)

Parameter Type Description

AppID PLS_INTEGER application identifier re-
turned by DDE.APP_BE-
GIN

Activates a DDE server application program started by
DDE.APP_BEGIN.

The application can also be activated in standard Microsoft Windows
fashion, such as by clicking within the application window.

To activate a DDE server application, the DDE server application must
have been previously started by calling DDE.APP_BEGIN.

DECLARE

AppID PLS_INTEGER;

BEGIN

/* Start Microsoft Excel application in fullscreen mode. */

AppID := DDE.App_Begin(’C:\excel\excel.exe,

DDE.APP_MODE_MAXIMIZED);

/* Activate the application window. */

DDE.App_Focus(AppID);

END;

Syntax:

Parameters:

Description:

Example:

12 – 8 Forms Advanced Techniques

DDE.EXECUTE

DDE.EXECUTE (ConvID, Command, Timeout)

Parameter Type Description

ConvID PLS_INTEGER DDE conversation id

Command VARCHAR2 Command string for the
server to execute

Timeout PLS_INTEGER Timeout duration in
milliseconds

The value of Command depends on what values are supported by the
server application.

Timeout specifies the maximum length of time, in milliseconds, that this
routine waits for a response from the DDE server application. If the
user specifies an invalid number, such as negative number, then the
default value of 1000 ms is used. The duration of the timeout depends
on machine configuration and the DDE server application.

Executes a command string that is acceptable in the receiving DDE
server application.

DECLARE

ConvID PLS_INTEGER;

BEGIN

/* Open a DDE conversation with Microsoft Excel for Windows */

ConvID := DDE.Initiate(’EXCEL’, ’C:\abc.xls’);

/* Recalculate the Excel spreadsheet.*/

DDE.Execute(ConvID, ’[calculate.now()]’, 1000);

END;

Syntax:

Parameters:

Returns:

Description:

Example:

12 – 9Dynamic Data Exchange (DDE)

DDE.GETFORMATNUM

DDE.GETFORMATNUM (FormatStr)

Parameter Type Description

FormatStr VARCHAR2 Data format name string

PLS_INTEGER

Translates or registers a specified data format name and returns a
format number.

This function converts a data format from a string to a number. This
number can be used in Poke and Request transactions to represent the
DataFormat parameter.

If the specified name is not registered, this function registers it and
returns a unique format number. This is the only way to use a format
in a Poke or Request transaction that is not one of the predefined
formats.

This function returns the numeric representation of the data format
string that is a PLS_INTEGER.

See the section, “Microsoft Windows Predefined Data Formats,” later in
this chapter for the predefined data format constants.

DECLARE

FormatNum PLS_INTEGER;

MyFormatNum PLS_INTEGER;

BEGIN

/* Get predefined format number for ”CF_TEXT”

(should return CF_TEXT=1). */

FormatNum := DDE.GetFormatNum(’CF_TEXT’);

/* Register a user–defined data format called ”MY_FORMAT”. */

MyFormatNum := DDE.GetFormatNum(’MY_FORMAT’);

END;

Syntax:

Parameters:

Returns:

Description:

Example:

12 – 10 Forms Advanced Techniques

DDE.GETFORMATSTR

DDE.GETFORMATSTR (FormatNum)

Parameter Type Description

FormatNum PLS_INTEGER Data format number

CHAR

Translates a data format number into a format name string.

This function returns the string representation of the data format
number that is a CHAR.

This function returns a data format name if the data format number is
valid. Valid format numbers include the predefined formats in the
section, “Microsoft Windows Predefined Data Formats,” and any
user–defined formats that were registered with
DDE.GETFORMATNUM.

DECLARE

FormatStr CHAR(20);

BEGIN

/* Get a data format name

(should return the string ’CF_TEXT’) */

FormatStr := DDE.GetFormatStr(CF_TEXT);

END;

Syntax:

Parameters:

Returns:

Description:

Example:

12 – 11Dynamic Data Exchange (DDE)

DDE.INITIATE

DDE.INITIATE (Service, Topic)

Parameter Type Description

Service VARCHAR2 DDE Server
application’s DDE
service code

Topic VARCHAR2 Topic name for the
conversation

The values of Service and Topic depend on the values supported by a
particular DDE server application. Service is usually the name of the
DDE server application program. For applications that operate on
file–based documents, Topic is usually the document filename; in
addition, the System topic is usually supported by each service.

PLS_INTEGER

Opens a DDE conversation with a DDE server application.

An application can start more than one conversation at a time with
multiple services and topics, provided the conversation identifiers are
not interchanged.

This function returns the DDE conversation identifier that is a
PLS_INTEGER. The conversation identifier that is returned must be
used in all subsequent Execute, Poke, Request, and Terminate calls for
that conversation.

To terminate the conversation, you should call DDE.TERMINATE.

DECLARE

ConvID PLS_INTEGER;

BEGIN

/* Open a DDE conversation with Microsoft Excel for Windows

 on topic abc.xls. */

ConvID := DDE.Initiate(’EXCEL’, ’c:\abc.xls’);

END;

Syntax:

Parameters:

Description:

Example:

12 – 12 Forms Advanced Techniques

DDE.POKE

DDE.POKE (ConvID, Item, Data, DataFormat, Timeout)

Parameter Type Description

ConvID PLS_INTEGER DDE conversion
identifier that is
returned by
DDE.INITIATE

Item VARCHAR2 Data item name to
which the data is to be
sent

Data VARCHAR2 Data buffer to send

DataFormat PLS_INTEGER Format of outgoing data

Timeout PLS_INTEGER Timeout duration in
milliseconds

The value of Item depends on what values are supported by the DDE
server application on the current conversation topic.

The predefined data format constants listed in the section, “Microsoft
Windows Predefined Data Formats,” can be used for DataFormat. A
user–defined format that is registered with DDE.GETFORMATNUM
can also be used, provided the DDE server application recognizes the
format. It is your responsibility to ensure that the DDE server
application processes the specified data format.

Timeout specifies the maximum length of time, in milliseconds, that this
routine waits for a response from the DDE server application. If you
specify an invalid number, such as negative number, then the default
value of 1000 ms is used. The duration of the timeout depends on
machine configuration and the DDE server application.

Sends data to a DDE server application.

DECLARE

ConvID PLS_INTEGER;

BEGIN

/* Open a DDE conversation with Microsoft Excel for Windows on

topic abc.xls. */

ConvID = DDE.Initiate(’EXCEL’, ’C:\abc.xls’);

/* Send data ”foo” to cell at row 2, column 2. */

DDE.Poke(ConvID, ’R2C2’, ’foo’, DDE.CF_TEXT, 1000);

END;

Syntax:

Parameters:

12 – 13Dynamic Data Exchange (DDE)

DDE.REQUEST

DDE.REQUEST (ConvID, Item, Buffer, DataFormat, Timeout)

Parameter Type Description

ConvID PLS_INTEGER DDE conversion
identifier returned by
DDE.INITIATE

Item VARCHAR2 Requested data item
name

Buffer VARCHAR2 Result data buffer

DataFormat PLS_INTEGER Format of requested
data

Timeout PLS_INTEGER Timeout duration in
milliseconds

The value of Item depends on what values are supported by the DDE
server application on the current conversation topic.

It is your responsibility to ensure that the return data buffer is large
enough for the requested data. If the buffer size is smaller than the
requested data, the data is truncated.

The predefined data format constants listed in the section, “Microsoft
Windows Predefined Data Formats,” can be used for DataFormat. A
user–defined format that is registered with DDE.GETFORMATNUM
can also be used, provided the DDE server application recognizes this
format. It is your responsibility to ensure that the DDE server
application will process the specified data format.

Timeout specifies the maximum length of time, in milliseconds, that this
routine waits for a response from the DDE server application. If you
specify an invalid number, such as negative number, then the default
value of 1000 ms is used. The duration of the timeout depends on
machine configuration and the DDE server application.

Description:

Example:

Syntax:

Parameters:

Description:

Restrictions:

Example:

12 – 14 Forms Advanced Techniques

Requests data from a DDE server application.

DECLARE

ConvID PLS_INTEGER;

Buffer CHAR(100);

BEGIN

/* Open a DDE conversation with Microsoft Excel for Windows on

topic abc.xls. */

ConvID := DDE.Initiate(’EXCEL’, ’C:\abc.xls’);

/* Request data from 6 cells between row 2, column 2

and row 3, column 4. */

DDE.Request(ConvID, ’R2C2:R3C4’, Buffer, DDE.CF_TEXT,1000);

END;

DDE.TERMINATE

DDE.TERMINATE (ConvID)

Parameter Type Description

ConvID PLS_INTEGER DDE conversion
identifier returned by
DDE.INITIATE

Terminates the specified conversation with a DDE server application.

After the DDE.TERMINATE call, all subsequent Execute, Poke,
Request, and Terminate requests using the terminated conversation
identifier will result in an error.

You should use DDE.INITIATE to start a DDE conversation with a
server application before attempting to use DDE.TERMINATE.

DECLARE

ConvID PLS_INTEGER;

BEGIN

/* Open a DDE conversation with Microsoft Excel for Windows

on topic abc.xls. */

ConvID := DDE.Initiate(’EXCEL’, ’C:\abc.xls’);

...

/* Terminate the Microsoft Excel for Windows conversation */

DDE.Terminate(ConvID);

END;

12 – 15Dynamic Data Exchange (DDE)

Microsoft Windows Predefined Data Formats

Format Description

DDE.CF_BITMAP The data is a bitmap.

DDE.CF_DIB The data is a memory object containing a
BITMAPINFO structure followed by the bitmap
data.

DDE.CF_DIF The data is in Data Interchange Format (DIF).

DDE.CF_DSPBITMAP The data is a bitmap representation of a private
format. This data is displayed in bitmap format in
lieu of the privately formatted data.

DDE.CF_
DSPMETAFILEPICT

The data is a metafile representation of a private
data format. This data is displayed in
metafile–picture format in lieu of the privately for-
matted data.

DDE.CF_DSPTEXT The data is a textual representation of a private
data format. This data is displayed in text format
in lieu of the privately formatted data.

DDE.CF_
METAFILEPICT

The data is a metafile.

DDE.CF_OEMTEXT The data is an array of text characters in the OEM
character set. Each line ends with a carriage
return–linefeed (CR–LF) combination. A null
character signals the end of the data.

DDE.CF_
OWNERDISPLAY

The data is in a private format that the clipboard
owner must display.

DDE.CF_PALETTE The data is a color palette.

DDE.CF_PENDATA The data is for the pen extensions to the Microsoft
Windows operating system.

DDE.CF RIFF The data is in Resource Interchange File Format
(RIFF).

DDE.CF_SYLK The data is in Microsoft Symbolic Link (SYLK) for-
mat.

DDE.CF_TEXT The data is an array of text characters. Each line
ends with a carriage return–linefeed (CR–LF) com-
bination. A null character signals the end of the
data.

DDE.CF_TIFF The data is in Tag Image File Format (TIFF).

DDE.CF_WAVE The data describes a sound wave. This is a subset
of the CF_RIFF data format; it can be used only for
RIFF WAVE files.

12 – 16 Forms Advanced Techniques

Exceptions

Exception Description

DDE.DDE_APP_FAILURE An application program specified in a
DDE.APP_BEGIN call could not be
started.

DDE.DDE_APP_NOT_FOUND An application ID specified in a
DDE.APP_END or DDE.APP_FOCUS
call does not correspond to an
application that is currently running.

DDE.DDE_FMT_NOT_FOUND A format number specified in a
DDE.GETFORMATSTR call is not
known.

DDE.DDE_FMT_NOT_REG A format string specified in a
DDE.GETFORMATNUM call does
not correspond to a predefined format
and could not be registered as a
user–defined format.

DDE.DDE_INIT_FAILED The application was unable to
initialize DDE communications,
which caused a call to the DDE layer
to fail.

DDE.DDE_PARAM_ERR An invalid parameter, such as a
NULL value, is passed to a DDE
package routine.

DDE.DMLERR_BUSY A transaction failed because the
server application is busy.

DDE.DMLERR_DATAACKTIMEOUT A request for a synchronous data
transaction has timed out.

DDE.DMLERR_EXECACKTIMEOUT A request for a synchronous execute
transaction has timed out.

DDE.DMLERR_
INVALIDPARAMETER

A parameter failed to be validated.
Some of the possible causes are as
follows:
The application used a data handle
initialized with a different item–name
handle or clipboard data format than
that required by the transaction.
The application used an invalid
conversation identifier.
More than one instance of the
application used the same object.

DDE.DMLERR_MEMORY_ERROR A memory allocation failed.

12 – 17Dynamic Data Exchange (DDE)

Exception Description

DDE.DMLERR_NO_CONV_
ESTABLISHED

A client’s attempt to establish a
conversation has failed. The service
or topic name in a DDE.INITIATE call
may be in error.

DDE.DMLERR_NOTPROCESSED A transaction failed. The item name
in a Poke or Request transaction may
be in error.

DDE.DMLERR_POKEACKTIMEOUT A request for a synchronous poke
transaction has timed out.

DDE.DMLERR_POSTMSG_FAILED An internal call to the PostMessage
function has failed.

DDE.DMLERR_SERVER_DIED The server terminated before
completing a transaction.

DDE.DMLERR_SYS_ERROR An internal error has occurred in the
DDE layer.

12 – 18 Forms Advanced Techniques

C H A P T E R

13
T

13 – 1PL/SQL Interface to Foreign Functions

PL/SQL Interface to
Foreign Functions

his chapter examines the PL/SQL interface for invoking foreign
functions. The topics covered in this chapter include:

• About the PL/SQL Interface 13 – 2

• About Foreign Functions 13 – 3

• Creating a PL/SQL Interface to Foreign Functions 13 – 6

• Invoking a Foreign Function from PL/SQL 13 – 9

• An Example of Creating a PL/SQL Interface 13 – 11

• Accessing the Microsoft Windows SDK from PL/SQL 13 – 16

13 – 2 Forms Advanced Techniques

About the PL/SQL Interface

Foreign functions are subprograms written in a 3GL programming
language that allow you to customize your Oracle Forms applications to
meet the unique requirements of your users. Foreign functions are often
used to enhance performance or provide additional functionality to
Oracle Forms.

In Oracle Forms, you can invoke a foreign function from a PL/SQL
interface. A PL/SQL interface allows you to call foreign functions using
PL/SQL language conventions.

Foreign functions that you can invoke from a PL/SQL interface must be
contained in a dynamic library. Examples of dynamic libraries include
dynamic link libraries on Microsoft Windows, and shared libraries on
UNIX systems.

Creating a PL/SQL interface to foreign functions requires the use of the
ORA_FFI built–in package (Oracle Foreign Function Interface). The
ORA_FFI package consists of a group of PL/SQL built–in subprograms
for creating a PL/SQL interface to foreign functions. For more details
on the ORA_FFI package, refer to the Oracle Procedure Builder Developer’s
Guide. The ORA_FFI package documentation is also available in Oracle
Forms online Help.

Note: An alternative approach for invoking a foreign function is from a
user exit interface. Using a user exit interface to invoke foreign
functions occasionally requires relinking Oracle Forms Runform. For
more information about the user exit interface, refer to Chapter 3, “User
Exit Interface to Foreign Functions.” Because invoking foreign functions
from a user exit interface can require relinking Oracle Forms Runform,
using a PL/SQL interface provides a looser bind than that of a user exit
interface.

13 – 3PL/SQL Interface to Foreign Functions

About Foreign Functions

Foreign functions are subprograms written in a 3GL programming
language for customizing Oracle Forms applications. Foreign functions
can interact with Oracle databases, and Oracle Forms variables and
items. Although it is possible to access Oracle Forms variables and
items, you cannot call Oracle Forms built–in subprograms from a
foreign function.

Foreign functions can be used to perform the following tasks:

• Replace default Oracle Forms processing when running against a
non–Oracle data source using transactional triggers.

• Perform complex data manipulation.

• Pass data to Oracle Forms from operating system text files.

• Manipulate LONG RAW data.

• Pass entire PL/SQL blocks for processing by the server.

• Control real time devices, such as a printer or a robot.

Note: You should not perform host language screen I/O from a
foreign function. This restriction exists because the runtime
routines that a host language uses to perform screen I/O conflict
with the routines that Oracle Forms uses to perform screen I/O.
However, you can perform host language file I/O from a foreign
function.

Foreign functions that can be invoked from a PL/SQL interface must be
contained in a dynamic library. The procedure for creating a dynamic
library depends on your operating system. For more information on
creating dynamic libraries in your environment, refer to the
documentation for your operating system.

Types of Foreign Functions

You can develop the following types of foreign functions:

• Oracle Precompiler foreign functions

• OCI (ORACLE Call Interface) foreign functions

• non–ORACLE foreign functions

You can also develop foreign functions that combine both the ORACLE
Precompiler interface and the OCI.

13 – 4 Forms Advanced Techniques

Oracle Precompiler Foreign Functions An Oracle Precompiler foreign
function incorporates the Oracle Precompiler interface. This interface
allows you to write a subprogram in one of the following supported
host languages with embedded SQL commands:

• Ada

• C

• COBOL

• FORTRAN

• Pascal

• PL/I

Note: Not all operating systems support all of the listed languages. For
more information on supported languages, refer to the Oracle Forms
documentation for your operating system.

With embedded SQL commands, an Oracle Precompiler foreign function
can access Oracle databases as well as Oracle Forms variables and items.
You can access Oracle Forms variables and items by using a set of Oracle
Precompiler statements that provide this capability.

Because of the capability to access both Oracle databases and Oracle
Forms variables and items, most of your foreign functions will be Oracle
Precompiler foreign functions. For more information on the Oracle
Precompiler interface, refer to the Programmer’s Guide to the Oracle
Precompilers.

Oracle Call Interface(OCI) Foreign Functions An OCI foreign function
incorporates the Oracle Call Interface. This interface allows you to write
a subprogram that contains calls to Oracle databases. A foreign function
that incorporates only the OCI (and not the Oracle Precompiler
interface) cannot access Oracle Forms variables and items. For more
information on the OCI, refer to the Programmer’s Guide to the Oracle Call
Interface.

Non–Oracle Foreign Functions A non–Oracle foreign function does not
incorporate either the Oracle Precompiler interface or the OCI. For
example, a non–Oracle foreign function might be written entirely in the
C language. A non–Oracle foreign function cannot access Oracle
databases, or Oracle Forms variables and items.

13 – 5PL/SQL Interface to Foreign Functions

Precompiler Statements

All Oracle Precompiler foreign functions can use host language
statements to perform procedural operations. Precompiler foreign
functions can also use the following types of statements to perform
additional functions such as accessing the database and manipulating
Oracle Forms variables and items. For more information on the
following Oracle Precompiler statements, refer to Chapter 3, “User
Interface to Foreign Functions.”

Statement Use

EXEC SQL Performs SQL commands.

EXEC TOOLS GET Retrieves values from Oracle Forms
to a foreign function.

EXEC TOOLS SET Sends values from a foreign function
to Oracle Forms.

EXEC TOOLS MESSAGE Passes a message from a foreign
function to display in Oracle Forms.

EXEC TOOLS GET CONTEXT Obtains context information
previously saved in a foreign
function.

EXEC TOOLS SET CONTEXT Saves context information from one
foreign function for use in
subsequent foreign function
invocations.

EXEC ORACLE Executes Oracle Precompiler
options.

An Oracle Precompiler foreign function source file includes host
programming language statements and Oracle Precompiler statements
with embedded SQL statements. Precompiling an Oracle Precompiler
foreign function replaces the embedded SQL statements with equivalent
host programming language statements. After precompiling, you have
a source file that you can compile with a host language compiler. For
more information on a specific precompiler, refer to the appropriate
precompiler documentation for your environment.

13 – 6 Forms Advanced Techniques

Creating a PL/SQL Interface to Foreign Functions

Creating a PL/SQL interface to a foreign function involves the following
steps:

• Initializing the foreign function

• Associating a PL/SQL subprogram with the foreign function

• Mimicking the foreign function prototype with PL/SQL

A PL/SQL package encapsulates the components that are used in
creating a PL/SQL interface to a foreign function. You can include
PL/SQL interfaces to multiple foreign functions in a single PL/SQL
package. For each PL/SQL interface to a foreign function, you must
follow the procedure of initializing the foreign function, associating a
PL/SQL subprogram with the foreign function, and mimicking the
foreign function prototype in PL/SQL. Alternatively, you can opt to
include a PL/SQL interface to a single foreign function in a PL/SQL
package.

Initializing a Foreign Function

Initializing a foreign function identifies the location of a dynamic library
and dissects the foreign function prototype. The initialization process
provides a one–to–one match between foreign function host language
data types and PL/SQL data types. Initialize a foreign function in a
PL/SQL package body.

To initialize a foreign function:

1. Use ORA_FFI.LOAD_LIBRARY to obtain a library handle to the
dynamic library containing the foreign function. You must provide
the name and location of the dynamic library.

2. Use ORA_FFI.REGISTER_FUNCTION to obtain a function handle
to the foreign function. You must provide the library handle and
name of the foreign function.

3. Use ORA_FFI.REGISTER_PARAMETER to register the foreign
function parameter types. For each parameter, provide the function
handle to identify the foreign function and a corresponding PL/SQL
equivalent parameter type. You must register parameters in the
order they appear in the foreign function prototype.

4. Use ORA_FFI.REGISTER_RETURN to register the foreign function
return type. You must provide the function handle to identify the
foreign function and a corresponding PL/SQL equivalent return
type.

13 – 7PL/SQL Interface to Foreign Functions

For more details about the ORA_FFI package, refer to the Oracle
Procedure Builder Developer’s Guide. The ORA_FFI package
documentation is also available in Oracle Forms online Help.

Here is an example of initializing a foreign function:

PACKAGE BODY calc IS

BEGIN

/*

This example shows how to initialize the foreign function

int ADD(int X, int Y) that is contained in the dynamic

library CALC.DLL;

*/

lh_calc := ora_ffi.load_library(’c:\mathlib\’, ’calc.dll’);

fh_add := ora_ffi.register_function(lh_calc,’add’,

ora_ffi.C_STD);

ora_ffi.register_return(fh_add,ORA_FFI.C_INT);

ora_ffi.register_parameter(fh_add,ORA_FFI.C_INT);

ora_ffi.register_parameter(fh_add,ORA_FFI.C_INT);

END;

Associating a PL/SQL Subprogram with a Foreign Function

By associating a PL/SQL subprogram with a foreign function, you can
invoke the foreign function each time you call the associated PL/SQL
subprogram. Associating a foreign function with a PL/SQL
subprogram is necessary because an Oracle Forms uses PL/SQL
constructs. The associated PL/SQL subprogram specifies the memory
location of the foreign function code to be executed.

To associate a PL/SQL subprogram with a foreign function:

1. Obtain a function handle using ORA_FFI.FIND_FUNCTION or
ORA_FFI.REGISTER_FUNCTION.

2. In the declaration section of the body of your PL/SQL package,
define a PL/SQL subprogram that accepts a parameter of type
ORA_FFI.FUNCHANDLETYPE as the first parameter followed by
PL/SQL data type equivalents for all other foreign function
parameters.

3. Include a PRAGMA interface in the PL/SQL subprogram.

The PRAGMA statement invokes the foreign function by passing
control to the memory location in Oracle Forms that can
communicate with dynamic libraries.

13 – 8 Forms Advanced Techniques

For more details on the ORA_FFI package, refer to the Oracle Procedure
Builder Developer’s Guide. The ORA_FFI package documentation is also
available in Oracle Forms online Help.

Here is an example of associating a subprogram with a foreign function:

PACKAGE BODY calc IS

/*

This example shows how to associate a PL/SQL subprogram with

 the given function prototype, int ADD(int X, int Y);

*/

FUNCTION ff_ADD(ff_handle ORA_FFI.FUNCHANDLETYPE,

 X IN BINARY_INTEGER,

 Y IN BINARY_INTEGER);

RETURN BINARY_INTEGER;

PRAGMA interface(C, ff_ADD, 11265);

BEGIN

...

END;

Mimicking a Foreign Function Prototype with PL/SQL

Once you have associated a PL/SQL subprogram with a foreign
function, Oracle Forms invokes the foreign function whenever you call
the PL/SQL subprogram. The associated subprogram requires the first
parameter to be a foreign function handle, a parameter type that does
not have a host language equivalent in the foreign function prototype.

To provide a PL/SQL interface that has a one–to–one correspondence
between the parameter and return data types of the foreign function,
you must mimic the prototype of the foreign function using PL/SQL;
this is the PL/SQL interface that is made public.

To mimic a foreign function prototype with PL/SQL:

1. In the declaration section of the body of your PL/SQL package,
define a PL/SQL subprogram that accepts and returns PL/SQL data
type equivalents of the foreign function parameters; this is the
subprogram that mimics the foreign function prototype.

2. From the body of the mimicking subprogram, call the PL/SQL
subprogram associated with the foreign function.

3. Enter a PL/SQL subprogram prototype in the specification of your
PL/SQL package.

13 – 9PL/SQL Interface to Foreign Functions

Here is an example of mimicking a foreign function definition:

PACKAGE calc IS

FUNCTION ADD(X IN BINARY_INTEGER, Y IN BINARY_INTEGER)

RETURN BINARY_INTEGER;

END;

PACKAGE BODY calc IS

/*

Given the foreign function prototype, int ADD(int X, int y),

and the associated PL/SQL subprogram,

FUNCTION ff_ADD(ff_handle,X,Y),

this example shows how to mimic the foreign function

definition in PL/SQL.

*/

FUNCTION ADD(X IN BINARY_INTEGER, Y IN BINARY_INTEGER)

RETURN BINARY_INTEGER IS

BEGIN

RETURN(ff_ADD(ff_ADD_HANDLE,X,Y));

END;

BEGIN

...

END;

Invoking a Foreign Function from a PL/SQL Interface

After defining a PL/SQL interface to a foreign function, you can invoke
the foreign function using PL/SQL from Oracle Forms. To invoke the
foreign function from PL/SQL, you specify the PL/SQL package name
followed by a dot and the PL/SQL function name. This example shows
how to invoke the foreign functions Get_Image and Show_Image from
the ImageLib PL/SQL package.

PROCEDURE display_image(keywrd IN OUT VARCHAR2) IS

img_ptr ORA_FFI.POINTERTYPE;

BEGIN

img_ptr := ImageLib.Get_Image(keywrd);

ImageLib.Show_Image(img_ptr,2);

END;

Invoking a foreign function from a PL/SQL interface passes process
control to the foreign function. Upon completion of the
foreign function, process control is returned to Oracle Forms.

13 – 10 Forms Advanced Techniques

Passing Parameter Values to a Foreign Function from Oracle Forms

Passing parameter values, such as Oracle Forms variables and items, to
a foreign function that is invoked from a PL/SQL interface is similar to
passing parameters to any PL/SQL subprogram. Be sure to register the
parameter values when you create the PL/SQL interface.

After assigning an Oracle Forms variable or item value to a PL/SQL
variable, pass the PL/SQL variable as a parameter value in the PL/SQL
interface of the foreign function. The PL/SQL variable that is passed as
a parameter must be a valid PL/SQL data type; it must also be the
appropriate parameter type as defined in the PL/SQL interface.

/*

The variables X_Val and Y_Val contain values obtained from

Oracle Forms and are used as parameter values in the ADD

foreign function.

*/

DECLARE

X_Val BINARY_INTEGER := :addblk.Xitm;

Y_Val BINARY_INTEGER := :addblk.Yitm;

sum BINARY_INTEGER;

BEGIN

sum := ADD(X_Val, Y_Val);

END;

Returning a Value from a Foreign Function to Oracle Forms

Returning a value from a foreign function to an Oracle Forms variable or
item is similar to returning a value from any PL/SQL function. Be sure
to register the return value when you create the PL/SQL interface.

You obtain a return value from a foreign function by assigning the
return value to an Oracle Forms variable or item. Make sure that the
Oracle Forms variable or item is the same data type as the return value
from the foreign function.

/*

The BINARY_INTEGER that the ADD foreign function returns is

assigned to the item sum_itm of the block addblk.

*/

BEGIN

addblk.sum_itm:= ADD(X_Val, Y_Val);

END;

13 – 11PL/SQL Interface to Foreign Functions

Simplifying Complex Parameter Data Types

The ORA_FFI package only supports simple PL/SQL parameter and
return data types that correspond to the C programming language.
When complex parameter and return data types are used in foreign
function prototypes, you must simplify or substitute the parameter and
return type. If simplification is not possible, use a user exit interface
instead.

For example, there is no PL/SQL equivalent to a C language structure
data type. You can simplify the structure data type by creating a foreign
function that builds the structure. You cannot create a PL/SQL interface
to a foreign function without simplifying the complex parameter type.

MainStruct is an example of a complex parameter type:

Foreign_Func(MainStruct a, int b, char c)

{

/* process MainStruct */

...

}

To simplify the the MainStruct parameter, consider the following
approach:

New_Foreign_Func(int x, float y, char* z, int b, char c)

{

 struct MainStruct

{

int x;

float y;

char* z;

}

/* process MainStruct */

...

}

An Example of Creating a PL/SQL Interface to a Foreign Function

Although creating a PL/SQL interface is similar on most platforms, this
section describes aspects of Oracle Forms that is specific to its use in
Microsoft Windows. For information about other environments, refer to
the Oracle Forms documentation for your operating system.

This example invokes Windows Profile String functions from a PL/SQL
interface. The PL/SQL package OraWinProfile contains the PL/SQL
interface to the Windows Profile String functions.

13 – 12 Forms Advanced Techniques

This is the PL/SQL package specification:

PACKAGE OraWinProfile IS

/*

Function WritePrivateString calls the Windows

WritePrivateProfileString function

*/

FUNCTION WritePrivateString(pSection IN VARCHAR2,

 pEntry IN VARCHAR2,

 pString IN VARCHAR2,

 pFilename IN VARCHAR2)

RETURN BOOLEAN;

/*

Function GetPrivateString calls the Windows

GetPrivateProfileString function

*/

FUNCTION GetPrivateString(pSection IN VARCHAR2,

 pEntry IN VARCHAR2,

 pDefault IN VARCHAR2,

 pReturnBuffer IN OUT VARCHAR2,

 pReturnBufferN IN BINARY_INTEGER,

 pFilename IN VARCHAR2)

RETURN BINARY_INTEGER;

END OraWinProfile;

This is the PL/SQL package body:

PACKAGE BODY OraWindProfile IS

lh_window ora_ffi.libHandleType;

lh_forms ora_ffi.libHandleType;

fh_wpps ora_ffi.funcHandleType;

fh_gpps ora_ffi.funcHandleType;

/*

icd_wpps function acts as the interface to the

WritePrivateString function in Windows

*/

FUNCTION icd_wpps(funcHandle IN ora_ffi.funcHandleType,

 pSection IN OUT VARCHAR2,

 pEntry IN OUT VARCHAR2,

 pString IN OUT VARCHAR2,

 pFilename IN OUT VARCHAR2)

RETURN BINARY_INTEGER;

PRAGMA interface(c,icd_wpps,11265);

/*

icd_gpps function acts as the interface to the

GetPrivateString function in windows

13 – 13PL/SQL Interface to Foreign Functions

*/

FUNCTION icd_gpps(funcHandle IN ora_ffi.funcHandleType,

 pSection IN OUT VARCHAR2,

 pEntry IN OUT VARCHAR2,

 pDefault IN OUT VARCHAR2,

 pReturnBuffer IN OUT VARCHAR2,

 pRetrunBufferN IN BINARY_INTEGER,

 pFilename IN OUT VARCHAR2)

RETURN BINARY_INTEGER;

PRAGMA(c,icd_gpps,11265);

FUNCTION WritePrivateString(pSection IN VARCHAR2,

 pEntry IN VARCHAR2,

 pString IN VARCHAR2,

 pFilename IN VARCHAR2)

RETURN BOOLEAN IS

/* WritePrivateString calls the Windows function */

/* Make copies of in out arguments */

lSection VARCHAR2(1024) := pSection;

lEntry VARCHAR(1024) := pEntry;

lString VARCHAR2(1024) := pString;

lFilename VARCHAR(1024) := pFilename;

BEGIN

/*

validate arguments––although NULL is a valid argument

for Windows functions, we are going to prohibit this

case because of the format of the string that is

returned

*/

IF (lSection is NULL) OR (lEntry is NULL) OR

 (lString is NULL) OR (lFilename is NULL) THEN

 RAISE VALUE_ERROR;

END IF;

RETURN(icd_wpps(fh_wpps,lSection,lEntry,lString,

lFilename)<>0);

END WritePrivateString;

FUNCTION GetPrivateString(pSection IN VARCHAR2,

 pEntry IN VARCHAR2,

 pDefault IN VARCHAR2,

 pReturnBuffer IN OUT VARCHAR2,

 pReturnBufferN IN BINARY_INTEGER,

 pFilename IN VARCHAR2)

RETURN BINARY_INTEGER IS

/* GetPrivateString calls the Windows function */

/* Make copies of in out arguments */

lSection VARCHAR2(1024) := pSection;

lEntry VARCHAR(1024) := pEntry;

13 – 14 Forms Advanced Techniques

lDefault VARCHAR2(1024) := pDefault;

lFilename VARCHAR(1024) := pFilename;

BEGIN

/*

validate arguments––although NULL is a valid argument for

Windows functions, we are going to prohibit this case

because of the format of the string that is returned

*/

IF (lSection is NULL) OR (lEntry is NULL) OR

 (lDefault is NULL) OR (lFilename is NULL) OR

 (pReturnBufferN <= 0) THEN

 RAISE VALUE_ERROR;

END IF;

/* Pad the buffer with spaces */

pReturnBuffer := rpad(’ ’, pReturnBufferN);

RETURN(icd_gpps(fh_gpps,lSection,lEntry,lDefault,

pReturnBuffer,pReturnBufferN,lFilename));

END GetPrivateString;

BEGIN

/* Declare a library handle to the Windows 386 Kernel */

lh_windows := ora_ffi.load_library(NULL,’krnl386.exe’);

/*

Register the components of WritePrivateString

 This is function prototype for WritePrivateProfileString:

 BOOL WritePrivateProfileString(LPCSTR lpszSection,

 LPCSTR lpszEntry,

 LPCSTR lpszString,

 LPCSTR lpszFilename)

*/

fh_wpps := ora_ffi.register_function(lh_windows,

’WritePrivateProfileString’,

 ora_ffi.PASCAL_STD);

ora_ffi.register_return(fh_wpps,ORA_FFI.C_SHORT);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

/*

Register the components of GetPrivateString

This is function prototype for GetPrivateProfileString:

int GetPrivateProfileString(LPCSTR lpszSection,

 LPCSTR lpszEntry,

 LPCSTR lpszDefault,

 LPCSTR lpszReturnBuffer,

13 – 15PL/SQL Interface to Foreign Functions

 int cbReturnBuffer,

 LPCSTR lpszFilename)

*/

fh_gpps := ora_ffi.register_function(lh_windows,

 ’GetPrivateProfileString’,

 ora_ffi.PASCAL_STD);

ora_ffi.register_return(fh_gpps,ORA_FFI.C_INT);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_INT);

ora_ffi.register_parameter(fh_wpps,ORA_FFI.C_CHAR_PTR);

END OraWinProfile;

Here is an example of how to invoke the WritePrivateProfileString and
the GetPrivateProfileString functions from a PL/SQL interface in Oracle
Forms:

DECLARE

tmpb BOOLEAN;

tmpn NUMBER;

buffer VARCHAR(1024) := ’’;

buffern BINARY_INTEGER := 1024;

BEGIN

tmpb := OraWinProfile.WritePrivateString(’Section’,

 ’Entry’,

 ’string1’,

 ’PROFILE.INI’);

tmpn := OraWinProfile.GetPrivateString(’Section’,

 ’Entry’,

 ’Bad Entry’,

 buffer,

 buffern,

 ’PROFILE.INI’);

 MESSAGE(buffer);

END;

You invoke the WritePrivateString and GetPrivateString functions from
the OraWinProfile package. After executing the example PL/SQL code,
the following two lines are appended to the PROFILE.INI file.

[Section]

Entry=String1

The identical results would have been obtained if the Windows Profile
String functions, WritePrivateString and GetPrivateString, were called
from outside Oracle Forms. From this example, you can see how a
variety of foreign functions can be invoked in Oracle Forms from a
PL/SQL interface.

13 – 16 Forms Advanced Techniques

Accessing the Microsoft Windows SDK from a PL/SQL Interface

Many functions from the Microsoft Windows Software Developer’s Kit
(SDK) are accessible from a PL/SQL interface. Creating a PL/SQL
interface to a Microsoft Windows SDK function is similar to creating a
PL/SQL interface to any foreign function.

The parameters and return types of the Microsoft Windows SDK
function must be data types that have a PL/SQL equivalent; they cannot
be complex data types that cannot be simplified. For more information
on simplifying complex data types, refer to the section “Invoking a
Foreign Function from a PL/SQL Interface.”

A foreign function with complex parameters and return data types that
cannot be simplified can only be invoked from a user exit interface. An
example of a complex parameter data type that cannot be simplified is a
window handle, a parameter data type recognized by many Microsoft
Windows SDK functions. A window handle is a unique internal
character constant that is used to refer to interface objects.

In instances where the Microsoft Windows SDK function requires a
window handle, you cannot invoke the function from a PL/SQL
interface. Instead, you should use a user exit interface and the
Window_Handle property to provide the necessary parameters.
Window_Handle is a property of Oracle Forms items and windows.

In cases where the Microsoft Windows SDK function call is typical of a C
language function call without complex data types, you can invoke the
function from a PL/SQL interface. Treat the Microsoft Windows SDK
function like any other foreign function: during initialization, load the
library and register the function name, return type, and parameters.
After the creation of a PL/SQL interface to the Microsoft Windows SDK
function, you can invoke the Windows SDK function from Oracle Forms
using PL/SQL.

C H A P T E R

14
T

14 – 1Oracle Open Client Adapter for ODBC

Oracle Open Client
Adapter for ODBC

he Oracle Open Client Adapter for ODBC (OCA) allows
Developer/2000 tools on MS Windows to communicate with ODBC
data sources through ODBC drivers.

This chapter covers the following topics:

• About OCA and ODBC 14 – 2

• Setting Up Applications to Run with OCA 14 – 8

• Oracle Open Client Adapter Restrictions 14 – 12

• Using UBT 14 – 20

14 – 2 Forms Advanced Techniques

About OCA and ODBC

Using the Oracle Open Client Adapter, an application can access
different database management systems in one consistent manner. This
allows an application developer to develop, compile, and ship an
application without targeting a specific DBMS.

The Oracle Open Client Adapter is level 1 ODBC–compliant. The
Oracle Open Client Adapter also supports, on a driver–by–driver basis,
some level 2 ODBC functionality.

Oracle Forms supports both Designer and Runform ODBC datasource
connections. For information about restrictions when running Oracle
Forms against an ODBC datasource, see ”Setting Up Applications to
run with OCA” and ”Oracle Open Client Adapter Restrictions” later in
this chapter.

Note: Currently, Oracle supports only Microsoft SQL Server, Microsoft
Access, and Rdb.

The Oracle Open Client Adapter for ODBC provides the following
functionality:

• Supports both read–only and read–write access to ORACLE and
non–ORACLE databases that provide ODBC drivers.

• Supports standard SQL features, as described in the ODBC SQL
grammar.

• Supports Developer/2000 tools.

• Represents ODBC database dictionary information through the
standard ORACLE data dictionary views.

• ODBC/ORACLE data type conversions support most ORACLE
datatypes.

• National Language Support

– Character set translation between server side and client side
character sets.

– ASCII and EBCDIC.

– Major 8–bit character sets supported in database object
name.

• Unlike Open Gateway, no supporting Oracle kernel is required
for Data Dictionary support.

• Full read/write capability limited only by the ODBC backend.

• Allows SQL pass through and supports native SQL.

14 – 3Oracle Open Client Adapter for ODBC

Oracle Open Client Adapter Architecture

Your ODBC configuration consists of the following:

Performs processing and calls ODBC functions to
submit SQL statements and retrieve results.

Translates ORACLE database calls to ODBC calls.

Loads drivers on behalf of an application.

Processes ODBC function calls, submits SQL
requests to a specific data source, and returns
results to the application. If necessary, the driver
modifies an application’s request so that the
request conforms to syntax supported by the target
DBMS.

Consists of the data the user wants to access and
its associated operating system, DBMS, and
network platform (if any) used to access the DBMS.

Developer/2000 Application

Developer/2000
Application

Oracle Open
Client Adapter

Driver Manager

Driver

Data Source

14 – 4 Forms Advanced Techniques

Oracle Open Client Adapter Communications

The following drawing shows the different data sources with which the
Oracle Open Client Adapter can communicate.

Note: Currently, Oracle only supports Microsoft SQL Server, Microsoft
Access, and Rdb.

���

14 – 5Oracle Open Client Adapter for ODBC

Using Oracle Open Client Adapter with Oracle Forms

When running against an ODBC data source, Oracle Forms behaves as
it normally behaves when running against ORACLE, with a few
exceptions.

To interact with an ODBC data source via the Oracle Open Client
Adapter, an Oracle Forms application must:

• connect to an ODBC data source

After connecting to an ODBC data source, an Oracle Forms application
can:

• process and execute one or more SQL statements

• end each transaction by committing it or rolling it back

• terminate the connection when the application has finished
interacting with the data source

For information on restrictions when running Oracle Forms against
ODBC datasources, refer to ”Oracle Open Client Adapter Restrictions”
later in this chapter. For information on setting up an Oracle Forms
application to run against ODBC datasources, refer to ”Setting Up
Applications to Run with Oracle Open Client Adapter” later in this
chapter.

Establishing an ODBC Connection

To connect to an ODBC data source, the application or the user must
provide (within a logon string) a user ID, a password, and the name of
the data source.

Syntax: userid/password@odbc:odbc_datasource_name

where:

The logon ID or account name for access to the
data source (optional).

The user password that allows access to the
requested data source (optional).

The name of the data source being requested by the
application. If the user specifies a ” *” as a
wildcard, a dialog listing all available data sources
will appear.

Example:

scott/tiger@odbc:sqlserver

userid

password

odbc_datasource_

name

14 – 6 Forms Advanced Techniques

Note: If you omit the @odbc:database_name string or provide a
normal connect string, ORACLE database calls are not mapped to
ODBC calls; the adapter has no effect. Your Developer/2000 tool
behaves as it normally behaves when connecting to ORACLE.

The following SQL*Plus session illustrates the above concept:

Note: Connection information for each data source is stored in the
ODBC.INI file.

Executing SQL Statements

An ODBC application can submit any SQL statement supported by the
target DBMS. Submitting unsupported SQL will result in a DBMS
error.

An Oracle Forms application submits both default–generated and
developer–written SQL. In addition, Oracle Forms can submit SELECT
statements that have been constructed dynamically by operators using
the QUERY WHERE feature.

If an error occurs as a result of a SQL statement, the driver takes the
appropriate action and returns the error information to the application.
Error messages identify where the error originated, either in an ODBC
component or at the data source.

The Oracle Open Client Adapter can execute and process these SQL
statements with a few exceptions. For more information on ODBC SQL
restrictions, refer to the section, ”Oracle Open Client Adapter
Restrictions,” later in this chapter.

14 – 7Oracle Open Client Adapter for ODBC

Note that ODBC defines a standard syntax for SQL statements. If an
application submits a SQL statement that does not use the ODBC
syntax, the driver passes it directly to the target DBMS unmodified.

Terminating Transactions and Connections

Exiting Runform and any called forms that were invoked by the
CALL_FORM built–in subprogram terminates the Oracle Open Client
Adapter connection to the data source. Terminating an ODBC
connection frees all resources associated with the connection and
allows the application to reconnect to the same data source or to a
different data source.

14 – 8 Forms Advanced Techniques

Setting Up Applications to Run with OCA

When you design a form to run with Oracle Open Client Adapter, you
must set the following properties in Oracle Forms:

• Column Security block property

• Cursor Mode form module property

• Key Mode block property

• Locking Mode block property

• Primary Key block and item property

• Savepoint Mode form property

Setting these properties configures a form to run against an ODBC data
source.

Note: These properties (except Primary Key) can be set manually or by
inheritance via two OCA–specific property classes,
OCA_MODULE_PROPERTY and OCA_BLOCK_PROPERTY. These
property class objects can be copied from the demo form
OCA_PROP.FMB. OCA_PROP.FMB is located at
\ORACLE_HOME\OCA\ODBC10\DEMO.

To specify a primary key, you must select the appropriate item and then
define its Primary Key property.

For more information about property classes, refer to Chapter 4,
“Setting Object Properties,” in the Oracle Forms Developer’s Guide.

Required Setting

False
By default, the Column Security property is set to
False. Oracle Forms does not enforce column
update privileges. Rather, the database enforces
the privileges when Oracle Forms attempts to
update the database.

Do not set this property to True. The Column
Security property is an ORACLE–specific property
which requires the ORACLE data dictionary views:
ALL_OBJECTS, TABLE_PRIVILEGES,
ALL_SYNONYMS, and COLUMN_PRIVILEGES.

Property

Column Security
(block)

14 – 9Oracle Open Client Adapter for ODBC

Open
Unlike ORACLE, some non–ORACLE databases
do not allow the database state of cursors to be
maintained across transactions. Setting Cursor
Mode to Close specifies that cursors are closed at
commit time by the data source.

Updateable
The Key Mode block property determines how
Oracle Forms uniquely identifies rows in the
database. ORACLE uses unique ROWID values to
identify each row. Non–Oracle databases do not
include the ROWID construct, but instead rely
solely on unique primary key values to identify
unique rows.

Delayed
Specifies when Oracle Forms should attempt to
obtain database locks on rows that correspond to
queried records in the form. By default, Oracle
Forms attempts to lock the corresponding row
immediately after an operator modifies an item
value in a queried record.

When you set Locking Mode to Delayed, the
record is locked only while the transaction is being
posted to the database, not while the operator is
editing the record.

True
Setting the Primary Key property to True for a
block and item indicates that the item is a base
table item in a base table block and that it
corresponds to a primary key column in the base
table. Oracle Forms requires values in primary key
items to be unique.

False
Setting Savepoint Mode to False specifies that
Oracle Forms should not issue savepoints during a
session.

Cursor Mode
(form)

Key Mode (block)

Locking Mode
(block)

Primary Key
(block/item)

Savepoint Mode
(form)

14 – 10 Forms Advanced Techniques

OCA Support by Datasource

Functionality Oracle SQL Server Rdb MS Access

Data Dictionary Yes Yes Yes No

Data Conversions Implicit Explicit Implicit Explicit

Case Identifier Maps to UC Either Maps to UC Either

Security Features Yes Yes No (13) No

Column/Table
Name Syntax

No Spaces No Spaces No Spaces Spaces (6)

Key Mode All Modes PK Modes (1) PK Modes (1) PK Modes (1)

Cursor Mode All Modes Close Close Close

Savepoint Mode All Modes Off Off Off

Locking Mode All Modes Delayed Delayed None (9)

Non–Transactional
DBMS Locking

All Modes Delayed All Modes None (9)

Commit Processing All Modes All Modes All Modes Auto–Commit

Rollback Error All Modes (2) All Modes (2)

PL/SQL Supported
Datatypes

All All (10)(14) All(14) All (10)(14)

Supported State-
ments

All (3) (3) (3)

Cursor Manage-
ment

All (4) (4) (4)

Functions All (7) (11) (8)

Exceptions Yes Yes Yes Yes

Stored Procedures Yes No (5) No No

Table/View Loca-
tion

All Modes
(use <DB>)

Local DB Local DB (12) Local DB

(1) Either Updateable or Non–Updateable modes.

(2) Client must override the ON–ROLLBACK trigger to avoid a SQL
rollback error.

(3) DECLARE, BEGIN, END, COMMIT WORK, ROLLBACK, OPEN,
CURSOR, FETCH, CLOSE, GOTO, SELECT INTO, UPDATE, INSERT,
DELETE, NULL .

(4) DECLARE, OPEN, CLOSE, explicit/implicit attributes (%FOUND,
%NOTFOUND, %ROWCOUNT, %ISOPEN), cursor in loop constructs,
and FOR UPDATE OF...WHERE CURRENT OF.

14 – 11Oracle Open Client Adapter for ODBC

(5) Refer to the section, “SQL Server Restrictions” later in this chapter.

(6) In Microsoft Access, names can be up to 64 characters long and can
include any combination of letters, numbers, spaces and special
characters except a period (.), an exclamation mark (!), brackets ([]),
leading spaces, or control characters (ASCII 0 through 32).

(7) SUM, AVG, MAX, MIN, COUNT. ABS, FLOOR, SIGN, SQRT,
ROUND, ASCII, LOWER, UPPER, LTRIM, RTRIM, and SOUNDEX.

(8) SUM, AVG, MAX, MIN, COUNT, LTRIM, and RTRIM.

(9) Either mode should work. Microsoft Access does not support
locking mechanisms through SQL. The only possible modes ’read only’
and ’exclusive’ are specified when the database is opened in the ’Open
Database’ dialog box or ’ODBC Access Setup dialog’ box. Multiuser
locking modes such as ’No Locks’, ’All Records’, and ’Edited Record’
are specified on a per–table basis, and there is no support to do this
using SQL at runtime on an ODBC connection.

(10) Native datatypes are usable through PL/SQL, but mapping or
conversion problems may exist, as well as certain restrictions on
operations and length (e.g., MEMO (32k max) should map to LONG).
Note: With PL/SQL(Version1.1.43.x.x), you cannot do select <memo
col> into <a long var> from <tabname> because PL/SQL reports
improper INTO var type. Also for OLE (128M max) Access datatypes,
the same restriction applies; LONG RAW is limited to 32k.

(11) SUM, AVG, MAX, MIN, COUNT, UPPER, and LOWER. Rdb 6.x
supports external functions. Users can execute external functions in
SQL statements.

(12) If Rdb is being used with multi–schema naming, you must use the
MULTISCHEMA IS OFF syntax to attach a file. For example, ATTACH
’FILENAME DISK$VDEV9:[ORACLE]RDBTEST.Rdb MULTISCHEMA
IS OFF’.

If a table is created in a different schema with the same name, Rdb will
uniquely identify each schema object by appending numeric digits. For
more information, refer to your Rdb documentation.

(13) Rdb supports the GRANT and REVOKE commands.

Rdb does not support roles, privileges, or users. As a result,
Developer/2000 tools cannot use this information in
RdbVMS$PRIVILEGES for security features in this release.

(14) ODBC requires that the buffer for character data include space for
the null termination byte. When selecting a character column into a
PL/SQL variable, the PL/SQL buffer must have an additional byte to

14 – 12 Forms Advanced Techniques

store the null terminator, else data truncation occurs. For the same
reason CURSOR%ROWTYPE will not work if the row contains
columns of type CHAR or VARCHAR.

Oracle Open Client Adapter Restrictions

When developing applications, ODBC application developers should
be aware of the restrictions and limitations imposed by ODBC, as well
as those imposed by the target database. In general, these restrictions
involve developer–written SQL (SQL, PL/SQL, and the Default Where
clause).

Generic Restrictions

This section describes the generic restrictions which apply to each
Developer/2000 application when running with Oracle Open Client
Adapter.

Case Sensitivity ORACLE converts names of all database objects to
uppercase. Some databases, like SQL Server, are case sensitive. For
example, ABC, abc, AbC are treated as different identifiers.

Suggestion: Install SQL Server with the Case Insensitive option.

Scalar Functions Most databases do not support the set of scalar
functions provided by ORACLE, such as TO_CHAR() and DECODE().
Since PL/SQL only parses for ORACLE functions, the only functions
that will work with non–Oracle databases are the SQL common to
ORACLE and non–Oracle databases.

For a complete listing of Oracle scalar functions, refer to the SQL
Language Reference Manual.

Suggestion: In general, DECODE() functionality can be replaced by the
use of one or more relational views which contain joins that perform
the scalar column value mapping normally performed by the
DECODE(). It may also be possible to replace simple DECODE()
functions with arithmetic functions, which may be more efficient than
joins.

Data Dictionary Objects Oracle tools assume certain specific data
dictionary views with specific column names and types. In particular,
Oracle Forms requires the following views: ALL_OBJECTS,
ALL_TABLES, ALL_VIEWS, ALL_TAB_COLUMNS, ALL_USERS,
DUAL, TABLE_PRIVILEGES, ALL_SYNONYMS, and
COLUMN_PRIVILEGES.

14 – 13Oracle Open Client Adapter for ODBC

These ORACLE–specific views do not exist in non–ORACLE databases.

Suggestion: Currently, for SQL Server and Rdb, Oracle provides a
limited set of views to map the native dictionary objects into the
necessary ORACLE data dictionary views. When using these views,
users should restrict their usage to the columns provided.

Note: The Tables/Columns feature in the Oracle Forms Designer will
not work unless these views are present in the target data dictionary.

Column/Table Name Oracle Forms does not support spaces as part of
a column or table name. For example, ”EMPNO” and ”EMP_NO” are
valid column names, but ”EMP NO” is not. Column and table name
identifiers must not include spaces.

List of Values Oracle Open Client Adapter does not support V2 style
LOVs.

Comments within SQL Statements Although SQL Server supports
embedded SQL /*hint*/ style comments, not all ODBC databases
drivers have the same support.

Suggestion: Avoid embedding optimizer hint comments within SQL
statements.

NOWAIT Clause for Locks Oracle tools allow the NOWAIT clause to
be appended to SELECT statements. The NOWAIT option tells
ORACLE not to wait if the table has been locked by another user.

For example, when Oracle Forms updates a record, it issues the
following statement in order to lock the record for update.:

SELECT ... FOR UPDATE ... NOWAIT

If Oracle Forms cannot acquire the lock, the NOWAIT clause causes the
database to issue an error stating that the record has been locked by
another user. Control is then immediately returned to your application
so that it can do other work before trying again to acquire the lock.

Suggestion: The NOWAIT option is ORACLE–specific. Do not use the
NOWAIT parameter with the ENTER_QUERY or EXECUTE_QUERY
built–ins.

When the NOWAIT parameter is not specified, Oracle Forms behaves
as if it is in delayed locking mode; Oracle Forms waits to lock the
corresponding row in the database until the transaction is about to be
committed. With this setting, the record is locked only while the
transaction is being posted to the database, not while the operator is
editing the record.

14 – 14 Forms Advanced Techniques

If another user has a lock and, as a result, Oracle Forms is unable to
obtain a requested lock, Oracle Forms will request (via the lock dialog)
whether it should retry. The operator can respond Yes and wait for
Oracle Forms to acquire the lock or terminate the locking procedure by
pressing CTRL–C (or its equivalent).

Sequences A sequence is an Oracle–specific database object that
generates sequential numbers.

An Oracle Forms application can reference sequence values for default
item values by setting the Default item property to
SEQUENCE.my_seq.NEXTVAL.

Suggestion:Avoid the use of sequences. Most databases do not support
this functionality.

Commit/Rollback Some databases allow only one cursor per
connection. As a result, any additional cursors must be allocated
through separate connections.

Oracle Forms controls master–detail relations through multiple cursors.
Since SQL Server only allows one active cursor per connection, another
connection must be established for each detail. Because each cursor
has an individual connection, committing a master–detail block
application requires coordinating the various cursors. Consequently, a
problem could arise if only a subset of the multiple required
connections commit their work and a form could be inconsistently
updated if a remaining subset of the connections fail to commit or roll
back.

Suggestion: Use a driver that coordinates two–phase commits between
connections.

Selecting LONG Columns Some databases do not permit revisiting
columns to fetch LONG data piecemeal once data for the next column
has been fetched.

For example, assume that you issue the following statement:

SELECT A, B, C FROM TEST

If column B is a LONG, data for column B cannot be fetched piecemeal,
once data for column C is fetched. In order to fetch data piecemeal
from a LONG, the query must be re–arranged so that the LONG
column appears last.

SELECT A, C, B FROM TEST

The same restriction prohibits the inclusion of more than one LONG
column in a query executed against such databases.

14 – 15Oracle Open Client Adapter for ODBC

Suggestion: Modify your SELECT statements so that the LONG column
appears last.

Programmatic Offset–Based Fetching of LONG Columns Incremental
offset–based fetching of LONG field data is not supported by ODBC.
The ODBC specification permits only sequential fetching of data.

Unsupported PL/SQL Statements The Oracle Open Client Adapter
does not support the following PL/SQL statements:

ROLLBACK TO
SAVEPOINT
LOCK TABLE
SET TRANSACTION

Driver–Specific Restrictions

This section describes driver–specific restrictions which apply when
running with Oracle Open Client Adapter.

SQL Server Restrictions

This section describes the Microsoft SQL Server restrictions which
apply when running with Oracle Open Client Adapter. For
information about additional restrictions, refer to your MS SQL Server
Driver documentation.

GROUP BY, HAVING, and UNION Clauses The Microsoft ODBC
Driver for SQL Server (Version 1.02.3231 and later) does not support
the GROUP BY, HAVING, or UNION clause correctly. GROUP BY,
HAVING, or UNION SQL statements that do not contain a WHERE
clause result in incorrect statement modification by the Microsoft SQL
Server ODBC driver for SQLDescribeCol operations.

Suggestion: When using a GROUP BY, HAVING, or UNION clause in a
SQL statement without a WHERE clause, include a dummy WHERE
clause with the predicate WHERE 1 = 1.

SELECT FOR UPDATE If you are using a driver that does not support
the FOR UPDATE in SELECT statements, set the Locking Mode
property to Delayed and override (nullify) any default On–Lock
triggers. The Microsoft SQL Server driver does not support the FOR
UPDATE clause in SELECT statements.

DDL Statements The Transaction option is turned on for SQL Server
in Oracle Open Client Adapter. When the Transaction option is on,
Oracle Open Client Adapter restricts the usage of the following DDL
statements:

14 – 16 Forms Advanced Techniques

CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE
VIEW, all DROP statements, SELECT INTO (because it creates a
table),GRANT, REVOKE, ALTER DATABASE, TRUNCATE TABLE,
UPDATE STATISTICS, RECONFIGURE, LOAD DATABASE, LOAD
TRANSACTION, and DISK INIT.

When issuing these DDL statements (via the FORMS_DDL built–in
subprogram), you must not issue any subsequent DML statements
until you commit or roll back your transaction.

For example, issuing the following will result in an error:

SELECT ... CREATE ...

However, if you add a rollback, the statement will succeed:

SELECT ... ROLLBACK TRANSACTION ... CREATE ...

ORDER BY in SQL Server Within ORDER BY clauses, SQL Server
permits positional references to columns only if the columns are
explicitly listed.

For example,

SELECT * FROM TABLE .. ORDER BY <column_number>

will raise a SQL Server error.

Suggestion: Replace the ”*” with explicit column names, or substitute
the <column_number>with a <column_identifier>.

In addition, SQL Server does not permit duplicate column references in
the ORDER BY clause, such as:

SELECT C1, C2, C3 FROM TABLE .. ORDER BY C2, 2

FLOAT Datatype An Oracle Forms item defined as a NUMBER cannot
accept values greater than 2,147,483,647 if the corresponding SQL
Server column is a FLOAT datatype.

In addition, entering a floating point number as an integer may cause
an error. For example, entering 12345 into a float field will result in an
error. However, entering the floating point number as a decimal
(e.g.,12345.0) is valid as it indicates to the Oracle Open Client Adapter
that the number is a floating point number.

Suggestion: Floating point numbers should be entered as decimals.

Oracle PL/SQL % Predicate Because SQL Server does not support the
TO_CHAR datatype, the Oracle PL/SQL % predicate cannot be used at
runtime to query date or numeric datatypes.

Stored Procedure Support Currently, SQL Server stored procedures
are not supported by Oracle Forms or PL/SQL.

14 – 17Oracle Open Client Adapter for ODBC

Suggestion: To use a stored procedure which returns a result set, your
stored procedure must deposit its results in a temporary table. Oracle
Forms can then select from the temporary table. For more
information, refer to the sprocbild.sql and sprocrun.sql example scripts.

Global Variables SQL Server global variables cannot be used with
Oracle Forms or PL/SQL.

Transact SQL Statements Use of the following Transact SQL
statements is restricted:

• The PRINT statement cannot be used with PL/SQL, although
I/O routines can be called from within user exits.

• The WAIT FOR {DELAY ’time’ | TIME ’time’ | ERROREXIT
|PROCESSEXIT | MIRROR EXIT statement cannot be used with
PL/SQL.

• The FOR UPDATE ... WHERE CURRENT OF statement does not
work with SQL Server.

SQL Functions As a rule, SQL functions that exist in ORACLE and
SQL Server work with OCA. This includes the following:

• aggregates or SQL functions: ALL, DISTINCT, SUM, AVG, MAX,
MIN, and COUNT

• date functions: none

• mathematical functions: ABS, FLOOR, SIGN, SQRT, and
ROUND

• string functions: ASCII, LOWER, UPPER, LTRIM, RTRIM, and
SOUNDEX

• system functions: none

• text image functions: none

• type conversion: none

Multiple Inserts in a PL/SQL Block If multiple insert statements on a
table refer to the same database page for the table in a PL/SQL block,
the application will deadlock. This situation exists because the ODBC
driver executes the insert statements through separate connections, and
they lock each other out.

Suggestion: To perform multiple commits in the same PL/SQL block,
you could commit between inserts, or execute them in a PL/SQL
LOOP, or put the insert statements in a stored procedure and pass the
values as arguments to the procedure.

14 – 18 Forms Advanced Techniques

Microsoft Access Restrictions

This section describes the MS Access restrictions which apply when
running with Oracle Open Client Adapter. For information about
additional restrictions, refer to your MS Access Driver documentation.

SQL Statements Access SQL supports mainly DML commands.
Access specific SQL statements such as DISTINCTROW, the IN clause,
INNER JOIN, LEFT JOIN, RIGHT JOIN, PARAMETERS,
TRANSFORM, WITH OWNERACCESS OPTION, and PROCEDURE
can be used only with the FORMS_DDL built–in subprogram.

Datatypes All native datatypes are supported with the exception that
memo and OLE fields cannot be mapped to LONG and LONG RAW
columns in the current version of PL/SQL supported by Oracle Forms.
However, MEMO and OLE columns can be retrieved by mapping
them to CHAR and RAW datatype fields in PL/SQL, though updating
those columns will not be possible through CHAR/RAW datatypes
until OCA version 2.0 becomes available.

Locking Applications cannot perform any locking on Access database
tables unless programmed through Access Basic. In order to perform
locking on an Access database table, the operator must specify the
appropriate locking mode in the ODBC setup panel when selecting the
database. Locking modes in Oracle Forms have no effect on Access.

PL/SQL All PL/SQL programming constructs and datatypes can be
used with Access with the usual limitations when interfacing with
non–Oracle databases.

14 – 19Oracle Open Client Adapter for ODBC

Rdb Restrictions

This section describes the Rdb restrictions which apply when running
with Oracle Open Client Adapter. For information about additional
restrictions, refer to your Rdb Driver documentation.

SQL Statements Rdb SQL does not support the following
ORACLE–specific features: sequences, synonyms, database links,
security roles, pseudo–columns such as ROWID and ROWNUM, SQL
functions, row comparisons, set difference operators (MINUS and
INTERSECT), recursive queries, order by expressions, savepoints, and
disabled constraints.

Rdb–specific SQL statements can be executed using the FORMS_DDL
built–in function.

Datatypes Rdb and ORACLE datatypes can be mapped as follows:

Rdb ORACLE

CHAR CHAR

VARCHAR VARCHAR

TINYINT NUMBER

SMALLINT NUMBER (SMALLINT)

INTEGER NUMBER (INTEGER)

BIGINT NUMBER

REAL NUMBER (REAL)

FLOAT NUMBER (FLOAT)

DATE DATE

LIST OF BYTE VARYING RAW, LONG RAW

PL/SQL All PL/SQL programming constructs and datatypes can be
used with Rdb.

Note: Currently, a stored procedure in Rdb cannot be invoked from
PL/SQL unless it is parameterless or contains only input parameters.
Rdb stored procedures that do not contain parameters or contain only
input parameters can be called from a PL/SQL procedure by using the
FORMS_DDL built–in function.

14 – 20 Forms Advanced Techniques

Using UBT

UBT is an interactive command driver for testing and exercising the
Oracle Open Client Adapter. UBT enables you to issue SQL commands
within the interpreter or through command files. You can perform data
migration by using the database table–to–table COPY command.

SQL Command Syntax

You can divide your SQL commands into separate lines at any point, as
long as individual words are not split between lines.

SQL commands are terminated in one of two ways:

• with a semicolon (;). This indicates that you want to run the
command. Type the semicolon at the end of the last line of the
command.

• with a blank line. The command is ignored and the prompt
appears.

UBT Command Syntax

You may continue a long UBT command by typing a hyphen (–) at the
end of the line and pressing [Return]. If you wish, you may type a
space before typing the hyphen. The line number is displayed for the
next line.

Do not end a UBT command with a semicolon. When you finish
entering the command, just press [Return].

Note: Any non–UBT command is interpreted as a SQL command and
will be passed to the underlying database.

CONNECT

Description:

Syntax:

Parameters:

COPY

Description:

Syntax:

Parameters:

14 – 21Oracle Open Client Adapter for ODBC

UBT Commands

The following section provides a description of each UBT command.

Connects to a given username and database.

CONNECT username[/password][@database_specification]

Represents the username and password with
which you wish to connect to the database.

Consists of a SQL*Net or ODBC connection string.

Copies the data from a query to a table in a local or remote database.

COPY {FROM username[/password]@database_specification |

TO username[/password]@database_specification |

FROM username[/password]@database_specification TO

username[/password]@database_specification}

{APPEND/CREATE/INSERT/REPLACE} destination_table

[(column, column, column ...)] USING query

Note: | means OR

Represents the username/password you wish to
COPY FROM and TO. In the FROM clause,
username/password identifies the source of the
data; in the TO clause, username/password
identifies the destination.

Consists of a SQL*Net or ODBC connection string.
In the FROM clause, database_specification
represents the database at the source; in the TO
clause, database_specification represents the
database at the destination.

The exact syntax for SQL*Net depends on the
communications protocol your ORACLE
installation uses. The syntax for an ODBC
connection is ”ODBC:data_source” where the

username

[/password]

database_

specification

username

[/password]

database_

specification

14 – 22 Forms Advanced Techniques

ODBC keyword is followed by a colon and the
name of the installed data source.

Represents the table you want to create or to which
you want to add data.

Specifies the names of the columns in
destination_table. If you specify columns, the
number of columns must equal the number of
columns selected by the query. If you do not
specify any columns, the copied columns will have
the same names in the destination table as they had
in the source, if COPY creates destination_table.

Specifies a SQL SELECT statement that determines
which rows and columns COPY copies.

Specifies the username, password, and database
that contains the data to be copied. If you omit the
FROM clause, the source defaults to the database
UBT is connected to (the database that other
commands address). You must include a FROM
clause to specify a source database other than the
default.

Specifies the database containing the destination
table. If you omit the TO clause, the destination
defaults to the database UBT is connected to. You
must include a TO clause to specify a destination
database other than the default.

Inserts the rows from query into destination_table
if the table exists. If destination_table does not
exist, COPY creates it.

Inserts the rows from query into destination_table
after creating the table first. If destination_table
already exists, COPY returns an error.

Inserts the rows from query into destination_table
if the table exists.

Replaces destination_table and its contents with
the rows from query. If destination_table does not
exist, COPY creates it. If destination_table exists,
COPY drops the existing table and replaces it with
a table containing the copied data.

destination_table

(column, column,

column, ...)

USING query

FROM username

[/password]

database_

specification

TO username

[/password]

database_

specification

APPEND

CREATE

INSERT

REPLACE

Example:

@

Description:

Syntax:

DISCONNECT

Description:

Syntax:

QUIT/EXIT

Description:

Syntax:

SET AUTOCOMMIT

Description:

Syntax:

14 – 23Oracle Open Client Adapter for ODBC

The following command copies the entire EMP table to a table named
WESTEMP. Note that the tables are located in two different databases.
If WESTEMP already exists, both the table and its contents are
replaced. The columns in WESTEMP have the same names as the
columns in the source table, EMP.

COPY FROM scott/tiger@ODBC:INFO TO jack/smith@ODBC:HQ –

REPLACE westemp –

USING SELECT * FROM EMP

The following command copies selected records from EMP to the
database to which UBT is connected. Table SALESMEN is created
during the copy. UBT copes only the columns EMPNO and ENAME
and at the destination names them EMPNO and SALESMAN.

COPY FROM scott/tiger@ODBC:INFO –

CREATE salesmen (empno,salesman) –

USING SELECT empno, ename FROM emp –

WHERE job=’SALESMAN’

Runs the specified UBT command file.

@file_name.ext

Commits pending changes to the database and logs the user off the
database, but does not exit UBT.

DISCONNECT

Commits all pending database changes, terminates UBT, and returns
control to the operating system.

QUIT | EXIT

Toggles Autocommit to On or Off. Some databases allow certain types
of SQL statements only when Autocommit is On.

For example, SQL Server only allows DDL statements when
Autocommit is On.

SET AUTOCOMMIT {ON | OFF}

SPOOL

Description:

Syntax:

Parameters:

Example:

14 – 24 Forms Advanced Techniques

Stores query results in an operating system file.

SPOOL [file_name | OFF]

Represents the name for the file to which you wish
to spool.

Stops spooling

To record your displayed output in a file named DIARY.OUT, enter:

SPOOL DIARY.OUT

To stop spooling, type:

SPOOL OFF

file_name

OFF

A P P E N D I X

A
T

A – 1Using Oracle Terminal

Using Oracle Terminal

his appendix explains how to use Oracle Terminal to redefine the
mapping of Oracle Forms runtime keys to physical device keys. This
appendix also explains how to set the logical attributes of interface
objects by using Oracle Terminal to modify Oracle Forms resource files.
The main sections in this chapter are:

• About Oracle Forms Resource Files A – 2

• Using Oracle Terminal to Remap Oracle Forms
Key Mappings A – 2

• Oracle Forms Runtime Key Bindings A – 8

• Oracle Forms Logical Attributes A – 13

• Using Oracle Terminal to modify Oracle Forms Logical
Attributes A – 16

• Edit Attribute Node Options A – 18

• Logical Attribute Descriptions A – 20

A – 2 Forms Advanced Techniques

About Oracle Forms Resource Files

Resources are collections of related data. An application built with
Oracle Terminal support includes resources that describe its behavior
and appearance. Specifically, Oracle Forms resource files define design
time and runtime logical attributes and key bindings for Oracle Forms.

Using Oracle Terminal to edit the Oracle Forms resource file for your
platform, you can:

• associate a key sequence with an application function by
defining a key binding

• associate a key sequence with an Oracle Forms key trigger by
defining a key binding

• modify the visual appearance (face, pattern, color, etc.) of an
Oracle Forms–specific element

Note: Resource file names are platform–specific. On MS Windows, the
look and feel of an Oracle Forms application is defined by the resource
file, FMRUSW.RES. For more information about platform specific
resource files, refer to the Oracle Forms documentation for your
operating system.

Using Oracle Terminal to Remap Oracle Forms Key Mappings

Resource files associate application functions with specific keys, using
what are known as key bindings.

A key binding connects a key to an application function. When you
bind a key to a function, the program performs that function when you
type that keystroke.

By defining key bindings, you can integrate a variety of keyboards to
make an application feel similar on each of them.

In some instances, you may want to define your own key mapping for
a specific Oracle Forms function. For example, on MS Windows, the
default key mapping for [Show Keys] is Control+F1. Using Oracle
Terminal, you could remap the [Show Keys] function to Control+F2 or
to some other desired key mapping.

The key bindings that you create using Oracle Terminal automatically
appear in the Show Keys window when the operator invokes the Show
Keys function.

A – 3Using Oracle Terminal

Note: On some platforms, the [Help] key binding cannot be remapped.
For example, on MS Windows, [Help] is mapped to the F1 key and
cannot be remapped.

To remap an Oracle Forms key binding:

1. Start Oracle Terminal.

The Open dialog appears.

2. Open the appropriate Oracle Forms resource file (on MS Windows,
open FMRUSW.RES). For more information about
platform–specific resource files, refer to the Oracle Forms
documentation for your operating system.

Oracle Terminal appears.

Note: Before modifying an Oracle Forms resource file, you should
create a backup copy.

A – 4 Forms Advanced Techniques

3. Choose Functions–>Edit Keys.

The Key Binding Editor appears and lists Oracle Forms key
bindings (Designer and Runform) by category: windows–sqlforms,
runform, help, editor, listvalues, logon, aflotus, normal, debugger,
databaseerror, etc.

For more information about Runform key binding groups, refer to
“Oracle Forms Runform Key Bindings” later in this chapter.

4. Double–click on a category and modify the desired “Action” and
“Binding.”

A – 5Using Oracle Terminal

For example, to modify the key mapping for [Show Keys],
double–click on “windows–sqlforms,” specify the desired key
binding for Show Keys, then click OK.

Note: Key bindings must be unique. When you define a key
binding, verify it against each bind category to ensure uniqueness.

In addition, there are functions which have multiple key bindings.

For example, [Accept] is mapped to both F10 and the Return key,
depending on the context. As a result, in order to consistently bind
a sequence of keys with a function, you must modify the key
binding for each instance.

5. Choose File–>Save to save your modifications.

6. Choose Functions–>Generate to generate your modifications and to
create a new resource file, which incorporates the changes you
made to the key binding.

An alert appears, informing you that your resource file has been
successfully generated. Accept the alert.

Note: If you receive an error message instead, consult your Oracle
Terminal User’s Guide.

7. Choose File–>Save to save your changes to the new resource file.

8. Run Oracle Forms to use your new key binding.

A – 6 Forms Advanced Techniques

Using Oracle Terminal to Define Key Bindings for Key–Fn and Key–Other Triggers

When you create a Key–Fn or Key–Other Triggers, you must use Oracle
Terminal to associate a key with your Key–Fn or Key–Other function.
Creating a key binding for your trigger allows it to fire when the
operator presses the key sequence associated with your trigger.

1. In the Oracle Forms Designer, create your Key–Fn or Key–Other
trigger.

2. Using Oracle Terminal, open the appropriate Oracle Forms
resource file (on MS Windows, open FMRUSW.RES). For more
information about platform specific resource files, refer to the
Oracle Forms documentation for your operating system.

Oracle Terminal appears.

3. Choose Functions–>Edit Keys to invoke the Key Binding Editor.

4. In the Key Binding Editor, double–click on windows–sqlforms to
invoke the Key Binding Definition window.

5. Click on the Insert Row button and then enter the action that
corresponds to your Key–Fn or Key–Other trigger. (The chart
below applies only to MS Windows.)

Key–Fn Trigger MSW Action MSW Code

KEY–F0 User Defined Key 0 82

KEY–F1 User Defined Key 1 83

KEY–F2 User Defined Key 2 84

KEY–F3 User Defined Key 3 85

KEY–F4 User Defined Key 4 86

KEY–F5 User Defined Key 5 87

KEY–F6 User Defined Key 6 88

KEY–F7 User Defined Key 7 89

KEY–F8 User Defined Key 8 90

KEY–F9 User Defined Key 9 91

For example, if you created a KEY–F3 trigger, enter:

 User Defined Key 3

into the Action field.

A – 7Using Oracle Terminal

6. Specify a key binding for your Key–Fn trigger, then click OK.

For example, you could enter:

Action Binding

User Defined Key 3 Control+F2

Note: Key bindings must be unique. When you define a key
binding, verify it against each bind category to ensure uniqueness.

7. Click the Product Actions button to invoke the Product Actions
Editor.

8. Double–click on the sqlforms category.

The Product Action Definition window appears.

9. Click on the Insert Row button, enter the Action, Code, and
Description for your Key–Fn trigger, then click OK.

For example, if you create a KEY–F3 trigger that invokes a help
system, enter the following on MS Windows:

Action Code Description

User Defined Key 3 85 [Help System]

10. Dismiss the Product Action and Key Binding Editors by clicking on
the OK buttons, then choose File–>Save.

11. Choose Functions–>Generate to generate your modifications and
to create a new resource file, which incorporates the additions you
made.

12. Choose File–>Save to save your changes to the new resource file.

13. (Optional) Within the Forms Designer, set the Show Keys property
for your key trigger to True if you want the key binding for your
trigger to appear in the Show Keys window.

A – 8 Forms Advanced Techniques

Oracle Forms Runtime Key Bindings

The following chart lists the default Action, Code, Key bindings, and
category listings for Oracle Forms Runform on MS Windows. Refer to
this chart when creating Key–Fn or Key–Other triggers.

Action/Function MSW Code MSW Key Binding

windows–sqlforms

Show Keys 1003 Control+F1

Help 1004 F1

Accept 1000 F10

Cancel 1001 Escape

Exit 1002 Control+q

Refresh 1005

help:

Accept 1000 Return

Up 1306 UpArrow

Down 1307 DownArrow

Scroll Up 1302 PageUp

Scroll Down 1303 PageDown

Scroll Left 1304 LeftArrow

Scroll Right 1305 RightArrow

editor:

Clear Item 3 Control+End

Search/Replace 1200

Search Next Occurrence 1201

Replace Next Occurrence 1202

Toggle Insert/Replace 1203

A – 9Using Oracle Terminal

Action/Function MSW Key BindingMSW Code

listvalues:

Delete Backward 1303 Backspace

Pop Criteria 1301 F9

Accept 1000 Return

Page Up 1302 PageUp

Page Down 1303 PageDown

Scroll Left 1304 LeftArrow

Scroll Right 1305 RightArrow

Scroll Up 1306 UpArrow

Scroll Down 1307 DownArrow

Change Focus 1308 Tab

logon:

Next Item 1400

Previous Item 1401

aflotus:

Accept 1000 DownArrow

Accept 1000 Return

Accept 1000 F10

Cancel 1001 Escape

Exit 1002 Control+q

Previous Item 1403 LeftArrow

Previous Item 1403 Shift+Tab

Next Item 1404 RightArrow

Next Item 1404 Tab

Up 1405 UpArrow

Delete Backward 1406 Backspace

normal

Commit 1000

Next Item 1 Tab

Previous Item 2 Shift+Tab

A – 10 Forms Advanced Techniques

Action/Function MSW Key BindingMSW Code

Clear Item 3 Control+u

Up 6 UpArrow

Down 7 DownArrow

Scroll Up 12 DownArrow

Scroll Down 13 DownArrow

Edit 22 Control+e

Search 24 Control+s

Toggle Insert/Replace 25

Select 26 Return

Delete Backward 16 Backspace

Return 27 Return

List of Values 29 F9

Next Primary Key 61 Shift+F3

Clear Record 62 Shift+F4

Delete Record 63 Shift+F6

Duplicate Record 64 F4

Insert Record 65 F6

Next Set of Records 66 Control+>

Next Record 67 Shift+DownArrow

Previous Record 68 Shift+UpArrow

Clear Block 69 Shift+F5

Block Menu 70 F5

Next Block 71 Control+PageDown

Previous Block 72 Control+PageUp

Duplicate Item 73

Clear Form 74 Shift+F7

Enter Query 76 F7

Execute Query 77 F8

Display Error 78 Shift+F1

Print 79 Shift+F8

Count Query Hits 80 Shift+F2

Update Record 81

User Defined Key0 82

User Defined Key1 83

A – 11Using Oracle Terminal

Action/Function MSW Key BindingMSW Code

User Defined Key2 84

User Defined Key3 85

User Defined Key4 86

User Defined Key5 87

User Defined Key6 88

User Defined Key7 89

User Defined Key8 90

User Defined Key9 91

Clear End–of–Line 92

Debug 93

Toggle Query Mode 94

Redefine Username/
Password

11001 Control+n

Where Display 11002 Control+w

Debug Mode 11003 Control+?

Application Menu 11004 Control+,

Previous Menu 11005 Control+Return

Main Menu 11006 Control+.

Enter>1 OS Command 11007

Enter>2 OS Command 11008

Show Background Menu 11009 Control+/

Background Menu 1 1101 Control+1

Background Menu 2 11011 Control+2

Background Menu 3 11012 Control+3

Background Menu 4 11013 Control+4

Background Menu 5 11014 Control+5

Background Menu 6 11015 Control+6

Background Menu 7 11016 Control+7

Background Menu 8 11017 Control+8

Background Menu 9 11018 Control+9

Background Menu 10 11019 Control+0

Enter Application Pa-
rameters

11020 Control+F6

Enter Menu Parameters 11021 Control+F5

A – 12 Forms Advanced Techniques

Action/Function MSW Key BindingMSW Code

Accelerator1 11022 Control+F2

Accelerator2 11023 Control+F7

Accelerator3 11024 Control+F8

Accelerator4 11025 Control+F9

Accelerator5 11026 Control+F10

Display Full Screen
Menu

11032 Control+f

A – 13Using Oracle Terminal

Using Oracle Terminal to Modify Oracle Forms Logical Attributes

In addition to setting default, custom, and named visual attributes in
the Oracle Forms Designer, you can also modify the look (logical
attributes) of an Oracle Forms application by modifying Oracle Forms
resource files.

Oracle Forms logical attributes are organized into two groups:
character mode (cm_logicals) and GUI (forms_logicals).

Note: Because of the limited number of GUI logical attributes that can
be defined using Oracle Terminal, you should use the Oracle Forms
Designer to create custom visual attributes for the desired GUI
elements rather than using Oracle Terminal to modify an Oracle Forms
resource file.

When you edit Oracle Forms resource files, you specify font and color
attributes for character mode or GUI logical attributes, such as
field–current, field–non–current, pushbuttoncurrent, field–queryable,
etc.

About Attribute Precedence

In addition to modifying Oracle Forms resource files, there are several
other methods for setting display attributes for Oracle Forms objects.
You can:

• accept Oracle Forms default attributes

• define custom visual attributes

• define logical attributes using Oracle Terminal

• define display attributes using your window manager

In many cases, depending on the method chosen, you can create an
attribute that overrides an attribute defined at a higher level.

When defining object attributes, consider the following rules regarding
attribute precedence:

1. Window manager (lowest level)

Window manager definitions take precedence over Oracle
Terminal definitions, visual attributes defined in the Oracle
Forms Designer, local environment variable definitions
(ORACLE.INI, CONFIG.ORA, etc.), and default Oracle
Forms attributes.

A – 14 Forms Advanced Techniques

For example, on MS Windows, color attributes for buttons
are handled exclusively by Windows. Any color attributes
that you create and apply to buttons in the Oracle Forms
Designer have no effect on buttons.

To change the color attributes of a button in a Microsoft
Windows environment, use the MSW Control Panel facility.

2. Oracle Terminal definitions

Oracle Terminal definitions take precedence over visual
attributes defined in the Oracle Forms Designer, local
environment variable definitions, and default Oracle Forms
attributes.

For example, assume that you create a custom visual
attribute for the text items in your form so that text items
appear gray. Assume also that you use Oracle Terminal to
define all queryable items as cyan. When you run your
form, all text items appear gray, but when you invoke Enter
Query mode, text items appear cyan.

In this example, the Oracle Terminal definition takes
precedence and overrides the higher level attribute (the
custom visual attribute created at design time).

3. Visual attributes created within the Oracle Forms Designer

Designer–created visual attributes take precedence over local
environment variable definitions (ORACLE.INI,
CONFIG.ORA, etc.) and default Oracle Forms attributes.

For example, assume that you create and apply a named
visual attribute to the text items in your form. Assume also
that you define the FORMS45_DEFAULTFONT local
environment variable in CONFIG.INI so that item labels are
displayed with 10 point Courier.

At runtime, your named visual attribute takes precedence,
and Oracle Forms displays all text items according to the
properties defined by your named visual attribute.

4. Local environment variable definitions

Local environment variable definitions (ORACLE.INI,
CONFIG.ORA, etc.) take precedence over default Oracle
Forms attributes.

A – 15Using Oracle Terminal

For example, if you edit your ORACLE.INI file and define
the default font (FORMS45_DEFAULTFONT) as 10 point
Courier, Oracle Forms displays item labels as 10 point
Courier.

In this example, the default font in ORACLE.INI takes
precedence and overrides the default font attributes for
items.

5. Oracle Forms default attributes (highest level)

Oracle Forms applies default attributes to every object. At
runtime, Oracle Forms looks up the specific color, pattern,
and font characteristics for a particular object and then
displays it with its default attributes.

A – 16 Forms Advanced Techniques

Modifying Oracle Forms Logical Attributes

You can use the Oracle Terminal program to edit or delete the
definitions of logical attributes in an existing resource file.

To modify an Oracle Forms logical attribute:

1. Start Oracle Terminal.

The Open resource file dialog appears.

2. Using Oracle Terminal, open the appropriate Oracle Forms
resource file (on MS Windows, open FMRUSW.RES). For more
information about platform–specific resource files, refer to the
Oracle Forms documentation for your operating system.

Oracle Terminal appears.

3. Choose Functions–>Edit Attributes.

The Oracle Terminal Attributes window appears.

4. Select cm_logicals or form_logicals from the Attribute List pop list
field.

Oracle Terminal displays the logical attributes associated with your
selection.

A – 17Using Oracle Terminal

5. Select the desired attribute from the Attribute field, then click on
the Edit button.

Oracle Terminal displays the Logical Attribute Editor.

6. Select the desired node and then click on the Edit Attributes
button.

The Edit Attribute Node window appears.

A – 18 Forms Advanced Techniques

7. Define the desired attributes.

For example, you can define the pattern, color, size, style, and
weight of the desired logical attribute. For more information about
options in the Edit Attribute Node window, see “Edit Attribute
Node Descriptions” later in this chapter.

8. After making the desired modifications, click on the Apply Font
button.

9. Save your modifications by choosing File–>Save.

For more information on changing visual attributes, see the Oracle
Terminal User’s Guide.

Edit Attribute Node Options

The Edit Attribute Node window offers the following options to define
the font and color elements of a logical attribute.

Font Attributes

Font Attributes include:

• Face

• Size

• Style

• Weight

• Width

At runtime, Oracle Forms passes these settings to the window
manager. If the font that you specify is unavailable in the runtime
operating system, Oracle Forms uses the font that most nearly matches
the characteristics of the font specified.

Color and Fill Pattern Attributes

You can set the following color and pattern attributes in a custom or
named visual attribute definition:

• Foreground/Background Color

• Fill Pattern

A – 19Using Oracle Terminal

Foreground and Background Color Color is applied to objects in two
layers––a foreground layer and a background layer. You specify the
color of each layer by setting the Foreground Color and Background
Color attributes.

Pattern You can set the Pattern attribute to any of the predefined
patterns available on your system. Patterns are identified by name.
For example, the pattern named 45thinline is a pattern of thin, diagonal
lines on a solid background.

How Fill Pattern Affects Color Attributes Oracle Forms renders the
selected pattern in the foreground and background colors applied to an
object. The current pattern selection determines how color is applied:

• When the current pattern is Solid (the black square in the pattern
palette), the object displays in the color specified by the
Foreground Color attribute.

• When the current pattern is Transparent (the white square in the
Layout Editor pattern palette), the object displays in the color
specified by the Background Color attribute.

• When the current pattern is Clear, the object is transparent, and
neither the foreground color or background color is applied.

Note: The Clear pattern is not valid for items. For best results,
use the Transparent pattern for items (the solid white square in
the Layout Editor pattern palette).

• When the current pattern is any other pattern, the black elements
of the pattern are displayed in the current foreground color and
the white elements of the pattern are displayed in the current
background color.

A – 20 Forms Advanced Techniques

Logical Attribute Descriptions

Oracle Forms logical attributes are organized into two groups: GUI
(forms_logicals) and character mode (cm_logicals).

Cm_Logicals

Use Oracle Terminal to change the defaults for the Oracle
Forms–specific visual attributes for character–mode terminals, which
are listed below.

Attribute Name Context Where Attribute Is Used

ToolkitDisabled Generic attribute

ToolkitEnabled Generic attribute

ToolkitCurrent Generic attribute

ToolkitDisabledMnemonic Generic attribute

ToolkitEnabledMnemonic Generic attribute

ToolkitCurrentMnemonic Generic attribute

NormalAttribute Normal background for windows

Normal Text item

Bold Bold for all items (including check
boxes)

Bold–text Boilerplate

Bold–inverse Inverse bold for all items

Underline Underline for all items

Boilerplate Constant text

WindowTitleCurrent Title of active window

Menu Selected menu

Sub–menu Selected submenu

Full–screen–title Screen title

Menu–title Current menu title

Menu–subtitle Current menu subtitle

Menu–bottom–title Current title at bottom of menu

MenuItemEnable Enabled, non–current menu item

MenuItemDisabled Disabled menu item

MenuItemSelect Current menu item

MenuItemEnableMnemonic Mnemonic of an enabled menu item

MenuItemDisableMnemonic Mnemonic of a disabled menu item

A – 21Using Oracle Terminal

Attribute Name Context Where Attribute Is Used

MenuItemSelectMnemonic Mnemonic of the current menu item

TextControlCurrent Current field or text editor

Field–current Color for current text item

TextControlNonCurrent Disabled or non–current field or text
editor

Field–non–current Color for text item that is not currently
selected

TextControlSelect Selected text in an enabled field or text
editor

Field–selected–current Currently selected text item

Field–selected–non–current Text item that is not currently selected

Field–queryable Field that operator can query

PushButtonDefault Default or current button

PushButtonNonDefault Button that is not default

Button–non–current Non–current button

Button–current Current button

Alert Alert text

AlertIcon Icon in an alert window

AlertMessage Message text in an alert window

AlertBackground Alert background

Listtitle List of Values (LOV) title

ListItemSelect Selected item in a text list

ListItemNonSelect Unselected item in a text list

ListPrefix List prefix

ScrollThumb ”Elevator box” on scrollbar

Forms_Logicals

Use Oracle Terminal to change the GUI defaults for the Oracle
Forms–specific visual attributes, which are listed below.

Attribute Name Context Where Attribute Is Used

TextControlFailValidation Text item that fails validation

ItemQueryDisabled Text item that is explicitly disabled by
the operator, so it cannot be included
as query criteria

Status–Message Message appearing on status line

A – 22 Forms Advanced Techniques

Attribute Name Context Where Attribute Is Used

Status–Hint Hint appearing on status line

Status–Empty Status line with no text

Status–Items Indicators (lamps) on status line

Scroll–bar–fill, Inverse, Inverse–
underline, Bold–underline, Bold–
inverse–underline

These logical attributes are not unique
to Oracle Forms. As a result, these
logical attributes can be overridden by
the visual attributes defined by the
window manager.

A P P E N D I X

B
T

B – 1National Language Support

National Language
Support

his appendix discusses National Language Support (NLS) as it
affects developers of Oracle Forms applications. Topics covered in this
appendix include:

• About National Language Support B – 2

• Character Encoding Schemes B – 4

• Language and Territory Default Format Masks B – 10

• Oracle Forms Interface Translation B – 14

• Using the Oracle Translation Manager Approach B – 15

• Using the Runtime Language Switching Approach B – 16

• Using PL/SQL Libraries for Strings in Code B – 17

• Using Bidirectional Support B – 18

B – 2 Forms Advanced Techniques

About National Language Support

When you design applications for international use, you want those
applications to interact with form operators in their native language,
using their specific local conventions for displaying data. Oracle’s
National Language Support (NLS) includes three main layers:

• Support for national language character encoding schemes

• Support for language and territory conventions

• Interface translation

This combination of support at the character level, the data display
level, and the interface level ensures that your forms will be usable in
most European, Middle Eastern, and Asian languages, including
multi–byte character encoding schemes and bidirectionality.

Designing and deploying multi–lingual Oracle Forms applications
requires a two–part strategy:

• translating the Oracle Forms user interface

• translating the application–specific messages

In general, there are two types of application–specific data you’ll need
to translate:

• ”translatable text,” such as form menus, boilerplate text, item
labels, messages, and hints defined on item property sheets

• strings in triggers and procedures, including alerts and messages
defined in triggers

The Oracle Translation Manager product helps you translate the
”translatable text” strings in the Oracle Forms user interface into
multiple languages. (Translatable text appears as a hexadecimal
representation in the .FMT file in order to support multi–byte character
sets, so you cannot translate it directly).

You can use Oracle Translation Manager to assist with translation for
almost all multi–lingual forms applications. Unless your application
requires operators to toggle between languages at runtime, you can use
Oracle Translation Manager and then generate separate executable files
for each language.

While the Oracle Translation Manager helps you find and translate
strings in the user interface, the tools cannot pull out string constants in
PL/SQL triggers and procedures. Manual translation is required for
constant text within PL/SQL block, because that text is not clearly
delimited, but is often built up from variables and pieces of strings.

B – 3National Language Support

For a complete description of the Oracle Translation Manager and its
translation tools, refer to the Oracle Translation Manager User’s Guide.

NLS Architecture

National Language Support for Oracle Forms leverages off Oracle’s
NLS architecture, which has two main parts:

• Language–independent features

• Language–dependent data

Oracle Forms uses language–independent features to handle
manipulation of string data in an appropriate manner, depending on
the language and territory of the runtime operator, and automatically
format that data according to local date–and–time conventions.

Isolating the language–dependent data allows your application to deal
only with translating the strings that are unique to your application.

Error Messages and Boilerplate Text

All error messages and boilerplate text should be in the same language.
When running an Oracle Forms application, the operator views
messages and boilerplate text from three sources:

• Error messages from the database

• Runtime error messages produced by Oracle Forms

• Messages and boilerplate text defined as part of the application

Oracle’s NLS handles translation for the first two categories. You, as
the application developer, are responsible for translating the messages
in the third category. This rest of this appendix outlines several
approaches to producing multilingual Oracle Forms applications.

B – 4 Forms Advanced Techniques

Character Encoding Schemes

Oracle Forms and PL/SQL offer complete internal support for both
single and multi–byte character encoding schemes.

At the lowest level, national language support requires that the
terminal be able to display the correct characters for the local character
set. To display the correct characters requires that the software use the
character encoding scheme expected by the hardware. In general,
computers use one of two groups of encoding schemes, ASCII or
EBCDIC. Within each group, all schemes normally use the same
encoding for the standard Latin alphabet (a to z), but use different
encoding for special characters used in languages other than English.

The language used for operator input is determined by the operator
and limited only by the characters available in the character encoding
scheme supported by the terminal. For example, ISO8859–1 is an
extended Latin character set that supports more than 40 Western
European languages.

Oracle’s NLS features solve the problems that result from the fact that
different encoding schemes use different binary values to represent the
same character. With Oracle’s NLS, data created with one encoding
scheme can be correctly processed and displayed on a system that uses
a different encoding scheme. This feature is automatic and requires no
programming, as it relies on the NLS_LANG character set component
to describe the user’s environment.

Examples:

B – 5National Language Support

About the NLS Language Environment Variables

Use the NLS_LANG environment variable to control the
language–dependent operation of applications. NLS_LANG sets the
language for Oracle Forms messages displayed to the operator, such as
the ”Working...” message. In addition, the NLS_LANG environment
variable determines the default format masks used for DATE and
NUMBER datatypes, sorting sequence, and the characters that make up
the character set.

The syntax for NLS_LANG has three components:

NLS_LANG=language_territory.char_set

where:

Specifies the language and its conventions for
displaying messages and day and month names.

Specifies the territory and its conventions for
default date format, decimal character used for
numbers, currency symbol, and calculation of week
and day numbers.

Specifies the character set used for the UPPER,
LOWER, and INITCAP functions. This argument
also controls the character set used for displaying
messages.

NLS_LANG=French_France.WE8DEC
NLS_LANG=French_Switzerland.WE8DEC

NLS_LANG=Norwegian_Norway.NDK7DEC

NLS_LANG=Norwegian_Norway.WE8DEC

NLS_LANG=Japanese_Japan.JA16SJIS

NLS_LANG=America_.AR8ISO8859P6

NLS_LANG=America_.WE8ISO8859P1

language

territory

char_set

B – 6 Forms Advanced Techniques

In most cases, setting a single value for NLS_LANG will meet your
needs. However, if you need to use two sets of resource and message
files on the same machine at the same time, two other environment
variables are available:

• DEVELOPER_NLS_LANG

• USER_NLS_LANG

Use these two variables, instead of the single NLS_LANG, in these
circumstances:

• If you are a developer who prefers to use the Designer in
English, but you are developing an application for another
language, the two variables allow you to use different language
settings for the Designer and Runform.

• If you are a developer creating an application to run in a
language for which a local–language version of the Designer is
not currently available.

Note: If these environment variables are not specifically set, they take
their default values from NLS_LANG, so for the rest of this discussion,
”the language environment variable” will refer to the current language
environment variable, whether it’s set using NLS_LANG or one of the
other variables.

B – 7National Language Support

Additional NLS Environment Variables

Specifying the NLS_LANG environment variable sets default values for
additional NLS environment variables. If you want override the
defaults defined by a specific value of NLS_LANG, you can specifically
set the following NLS environment variables.

Environment Variable Specifies Example

NLS_DATE_FORMAT default date
format

MM/DD/YYYY

NLS_DATE_LANGUAGE language for
day and month
names

GERMAN

NLS_SORT sort sequence SWEDISH

NLS_NUMERIC_CHARACTERS decimal
character and
group separator
for numeric
characters

.,

(specify both
characters)

NLS_CURRENCY local currency
symbol (L)

$

NLS_ISO_CURRENCY ISO currency
symbol (C)

FRANCE

(territory name)

*NLS_MONETARY_CHARACTERS decimal
character and
group separator

for monetary
characters

.,

(specify both
characters)

*NLS_LIST_SEPARATOR separator for a
list of items (if
comma is used
within items)

:

*NLS_DEBIT debit amounts DB

*NLS_CREDIT credit amounts CR

*NLS_CALENDAR calendar format Persian

*These environment variables are supported for Oracle7.2 only.

For example, to specify the NLS_DATE_FORMAT in a Windows
environment, add this setting to your ORACLE.INI file:

NLS_DATE_FORMAT=MM/DD/YYYY

For more information about NLS environment variables, see the Oracle7
Server Reference, Chapter 3, ”National Language Support.”

B – 8 Forms Advanced Techniques

Oracle Forms NLS Parameters

You can use Oracle Forms built–in functions to obtain the current value
of the NLS environment variables for use in trigger code:

Environment
V i bl

NLS_LANG
Variables DEVELOPER_NLS_LANG USER_NLS_LANG

Built–in GET_FORM_PROPERTY GET_APPLICATION_
PROPERTY

Parameter Module_NLS_Lang User_NLS_Lang

Because both USER_NLS_LANG and DEVELOPER_NLS_LANG
default to the value of NLS_LANG, the Oracle Forms NLS parameters
will hold the value of NLS_LANG if either variable is not specifically
set.

Both Oracle Forms NLS parameters have four variations, to allow you
to retrieve either the complete environment variable or a specific
portion of it. This table shows the four parameters of the
GET_APPLICATION_PROPERTY built–in that return the
USER_NLS_LANG environment variable:

Parameter Returns

USER_NLS_LANG Entire USER_NLS_LANG variable

USER_NLS_LANGUAGE Language portion only

USER_NLS_TERRITORY Territory portion only

USER_NLS_CHARACTER_SET Character set portion only

To retrieve the DEVELOPER_NLS_LANG environment variable, call
GET_FORM_PROPERTY, using the MODULE_NLS_LANG parameter.

For more information on the GET_APPLICATION_PROPERTY and
GET_FORM_PROPERTY built–ins, see the Oracle Forms Reference
Manual, Vol. 1, Chapter 3, ”Built–ins.”

B – 9National Language Support

Character Set Design Considerations

When you begin to design forms for use in multiple languages, you
need to consider both the character sets used by form operators, and
those used by form developers. While conversion at the character set
level at runtime is automatic, this conversion logically does impact
performance.

For example, if you design and generate a form in one character set and
run it in another character set, you may notice a degradation in
performance. In addition, if a character set does not contain an
equivalent for a special character, it will display a question mark
instead of that character. However, even if you don’t see any visible
difference, as a developer you will want to pay attention to the
character sets you use to generate, because of performance issues.

If you’re designing forms to run in more than one language, or even in
the same language with different character sets, for best performance
you will want to match your generate environment to your runtime
environment:

• Determine the character set most widely used at runtime.

• Generate with the NLS environment variable set to that character
set.

Tip: If you want to use a font that belongs to a character set other than
the font set in the NLS environment variable, set it through the Layout
Editor Format–>Font dialog, rather than the Properties window.

B – 10 Forms Advanced Techniques

Language and Territory Default Format Masks

While the character encoding schemes ensure that the individual
characters needed for each language are available, support for national
conventions provides correct localized display of data items, such as:

• day and month names

• number formatting

• date formatting

• currency formatting

• sorting sequence for character data

The language environment variable establishes not only the language
used for the Oracle Forms interface (both Designer and Runtime), but
also the set of default format masks used to display that data, unless
explicit format masks override the default. As a form developer, you
also have additional NLS–related format mask characters available if
you choose to override the default display masks.

Format Mask Design Considerations

All data input into the Designer or Runform will use the default format
masks associated with the specified NLS_LANG, so you can change
languages when designing a form as well as when running the form,
without needing to change the date and number formats.

Specifically, Oracle Forms will use the default format masks associated
with the territory specified in the current language environment
variable:

• in the Designer: When Oracle Forms displays default values for
items, ranges, or parameters

• at runtime: If a user enters data into a text item whose type is
territory–specific, such as DATE or NUMBER

Examples:

B – 11National Language Support

For example, suppose that you create an item of type DATE in the
Designer, and then enter a default value of 20–DEC–93, using the
NLS_LANG default of American_America. If you then change
NLS_LANG to Norwegian, the default value for the item will
automatically change to 20.12.1993.

Tip: For implicit datatype conversions, PL/SQL always expects items
in the American_America default format (such as DD–MON–YY), so if
you use an item whose type is territory–specific in PL/SQL, you will
need to specify the correct format masks. Oracle recommends that you
use TO_DATE to translate territory–specific items in PL/SQL.

For NLS–compliant applications, avoid hard–coding a string containing
a month name. However, if a hard–coded month name is essential,
avoid using the COPY built–in: If you use COPY, the month name may
be incorrect, depending on which language is specified. (To specify a
date in a library, use a variable for the date and COPY will work.)

Language–dependent example (not recommended):

:emp.hiredate := ’30–DEC–93’;

copy (’30–DEC–90’,’emp.hiredate’);

Instead, use TO_DATE, as shown in the following example.

Language–independent example (recommended):

:emp.hiredate := to_date(’30–12–1990’,’DD–MM–YYYY’);

B – 12 Forms Advanced Techniques

Format Mask Characters

The NLS–related format mask characters allow you to override the
default format masks:

Character Returns

C International currency symbol

L Local currency symbol

D Decimal separator

G Group (thousands) separator

While working with date and currency fields for multilingual
applications, you will want to consider:

• Whether to make all screen items (boilerplate, text items,
interface objects such as buttons and lists of values) longer to
accommodate text translation and language–specific conventions
for numeric display.

For example, if you develop an application in US–English with a
9–character DD–MON–YY date, and plan to run the application
in Norwegian, you’ll want to increase the size of the field to
allow for the NLS translation to a 10–character Norwegian date:
DD.MM.YYYY. By default, Oracle Forms increases the
maximum length but not the display length for dates. You must
explicitly increase the display length, if necessary.

• Whether you need to use the NLS–related format mask
characters to create special format masks, or if the default format
masks invoked by NLS_LANG are sufficient.

For more information about NLS–related format mask characters, see
the Format Mask property description in the Oracle Forms Reference
Manual, Vol. 2, Chapter 5, ”Properties.”

B – 13National Language Support

Screen Design Considerations

When designing an application that will be translated, remember to
leave extra space in the base screen design for widgets and boilerplate
labels. To accommodate multiple character sets and allow for
expansion caused by translation, a rule–of–thumb is to leave 30% white
space around fields, borders, and boilerplate text.

For example:

• Prompt on left of field: Allow 30% expansion room to left of
prompt.

• Prompt above field: Allow 30% expansion room to right of
prompt.

• Buttons, checkboxes, radio groups and poplists: Allow for 30%
expansion.

• Form titles: Size any bounding box so the title can expand to
right by 30%.

• Display–only fields: Size 30% wider than needed for base
language.

• All widgets: Make widgets large enough to accommodate
translation. For example, buttons need to be large enough to
hold translated labels. (Check button height as well as length, to
be sure the height of the button will accommodate the tallest
character you need to use. For example, calculate pixels needed
to render Kanji characters.)

B – 14 Forms Advanced Techniques

Oracle Forms Interface Translation

Translation of the Oracle Forms Designer user interface requires that
appropriate message files be installed during the Oracle Forms
installation procedure. With the appropriate message files installed for
a given language, the entire Oracle Forms interface will be translated
into the local language you set with the NLS language environment
variable, including:

• messages

• menus and menu items

• dialog boxes

• prompts and hints

• alerts

When you start the Designer in a different language, you’ll see prompts
in that language.

Note: It is not necessary to translate numbers or dates in default
values, ranges, and parameters, because Oracle Forms translates them
automatically, based on the value of the language environment
variable.

Message Files

When you change languages, Forms searches for the correct message
file, based on the NLS_LANG variable. If Forms does not find a
corresponding message file, it defaults to the US message file.

Message file names specify both the Oracle Forms component and the
language used. For example:

• FMDUS.MSB contains default (American) Designer messages

• FMGUS.MSB contains default (American) Generate messages

• FMFUS.MSB contains default (American) Runform messages

• FMFI.MSB contains Italian Runform messages

• FMFD.MSB contains German Runform messages

For more information about message file names, see the Installation
and User Guide for your platform.

B – 15National Language Support

Using the Oracle Translation Manager Approach

You can use Oracle Translation Manager to assist with translation for
almost all multi–lingual forms applications. Unless your application
requires operators to toggle between languages at runtime, you can use
Oracle Translation Manager and then generate separate executable files
for each language.

To change from one language to another at runtime, the user exits
Oracle Forms, changes the NLS environment variable, and then restarts
Oracle Forms.

Using the Oracle Translation Manager approach, you would develop
your application in the following stages:

• Create one basic form definition (.FMB, .MMB) in the source
language.

• Use the Oracle Translation Manager to extract strings for
translation, allow translation into one or several languages, and
then store the strings back into the form definition.

• Manually translate standard messages in PL/SQL libraries.

• Use the Oracle Forms Generate component to generate an
executable version of the form for each target language.

At runtime, the form is displayed in the appropriate language,
depending on which translated .FMX file is first in the search path you
set in the ORACLE.INI parameter, FORMS45_PATH.

Advantages: This is the simplest way to implement multiple language
applications quickly. With this approach, you can use the Oracle
Translation Manager translation tools for maximum efficiency. If you
have a stable application, this approach will work well for you.

For example, if you created an application in four languages and then
needed to change the text of a button label, you would make the
change in the Designer, save the change in the .FMB file, return to the
Oracle Translation Manager translation tools to translate the new
button label, then insert the new messages into the .FMB file and
regenerate to create an .FMX file containing the new button.

Disadvantages: If your applications must support multiple languages
simultaneously, you must use the runtime language switching
approach, instead.

B – 16 Forms Advanced Techniques

Using the Runtime Language Switching Approach

A small number of applications must support multiple languages
simultaneously. For example, the application may begin by displaying
a window in English which must stay up throughout the application,
while an operator may press a button on that window to toggle the
prompts into French, and then back into English.

If your application requires runtime language switching, you can
include more than one language in a single application as long as they
share the same character set, but you cannot use the Oracle Translation
Manager to locate translatable text if you are dynamically populating
the text at runtime. Instead, you would build case structures
(IF...THEN...ELSIF) to change the application to another language by
checking the value of the NLS environment variable using the
GET_FORM_PROPERTY built–in.

Using the runtime language switching approach, you would develop
your application in the following stages:

• Develop the entire form for one language, including libraries.

• Manually translate each library.

• Design boilerplate labels as appropriately–sized display items
that are dynamically populated at runtime.

Oracle Forms supports attaching multiple libraries, so you can use one
library specifically for messages that will be translated, and other
libraries for other purposes.

Advantages: The main advantage of this approach is it allows you to
support sophisticated applications in which the forms may be highly
dynamic. In these cases, this approach avoids some maintenance
problems, because you do not have to generate separate files for each
language each time the form changes.

Disadvantages: This approach is more complicated, because it
involves considerable effort to create the language–specific message
storage, population, and maintenance involved and to perform the
translation manually. For example, you would set up a
WHEN–NEW–FORM–INSTANCE trigger to set the labels for each
button, pulling the correct labels from an attached library, based on the
value of the NLS environment variable.

B – 17National Language Support

Using PL/SQL Libraries for Strings in Code

While the Oracle Translation Manager assists in translating messages
that are part of standard Oracle Forms interface, messages that are
displayed programmatically require special treatment. You can use the
PL/SQL libraries to implement a flexible message structure for
messages in triggers or procedures.

For application–specific messages—those displayed programmatically
to the screen by the built–in routines MESSAGE or
CHANGE_ALERT_MESSAGE, or by assigning a message to a display
item from a trigger or procedure—you can use the attachable PL/SQL
libraries to implement a flexible message function. The library can be
stored on the host, then dynamically attached at runtime. At runtime,
based on a search path, you can pull in the library attached to the form.
(For example, a library might hold only the Italian messages.)

Example:
FUNCTION nls_appl_mesg(index_no NUMBER)

RETURN CHAR

IS

 msg CHAR(80);

BEGIN

 IF index_no = 1001 THEN

 msg := ’L’’impiegato che Voi cercate non esiste...’;

 ELSIF index_no = 1002 THEN

 msg := ’Lo stipendio non puo essere minore di zero.’;

 ELSIF ...

 :

 ELSE

 msg := ’ERRORE: Indice messaggio inesistente.’;

 END IF;

 RETURN msg;

END;

A routine like this could be used anywhere a character expression
would normally be valid: for example, to display an alert with the
appropriately translated application message you might include the
following code in your form:

Change_Alert_Message(’My_Error_Alert’, nls_appl_mesg(1001));

n := Show_Alert(’My_Error_Alert’);

To change the application to another language, simply replace the
PL/SQL library containing the nls_appl_mesg function with a library of
the same name containing the nls_appl_mesg function with translated
text.

B – 18 Forms Advanced Techniques

If the application needs to support multiple languages simultaneously,
the function above could accept an additional parameter indicating the
desired language and the code would then contain an additional level
of IF...THEN...ELSIF...ELSE...END IF to handle the various languages.

Using Bidirectional Support

NLS support for Middle Eastern and North African languages includes
bidirectional support for languages whose natural writing direction is
right–to–left.

Bidirectional support allows developers to control:

• layout direction, which includes displaying items with labels at
the right of the item and correct placement of check boxes and
radio buttons

• reading order, which includes right–to–left or left–to–right text
direction

• alignment, which includes switching point–of–origin from upper
left to upper right

• initial keyboard state, which controls whether Local or Roman
characters will be produced automatically when the operator
begins data entry (the operator can override this setting)

In addition to the NLS_LANG environment variable, bidirectional
applications may use two additional NLS_LANG environment
variables:

• DEVELOPER_NLS_LANG

• USER_NLS_LANG

For more information, refer to ”About the NLS_LANG Environment
Variables,” earlier in this chapter.

Four properties are used to specify the appearance of objects in
bidirectional applications:

• Direction

• Alignment

• Reading Order

• Initial Keyboard State

B – 19National Language Support

Direction is an umbrella property that provides as much functionality
for each object as possible. For all objects except text items and display
items, the Direction property is the only bidirectional property, and its
setting controls the other aspects of bidirectional function. (List items,
however, include an Initial Keyboard State property.)

Text items and display items do not have a Direction property; instead,
you can specifically set Alignment, Reading Order, and Initial
Keyboard State properties for these items.

When the bidirectional properties are set to Default, those properties
inherit their values from the natural writing direction specified by the
NLS language environment variable. In most cases, this will provide
the desired functionality. You only need to specify the bidirectional
properties when you want to override the inherited default values.

This chart summarizes inheritance for bidirectional properties.

Default Setting Derives Value
From This Object

 Form NLS environment variable

All objects, such as
Alert, Block, LOV,
Window, and
Canvas–view

Form

All items, such as
Text Item, Display
Item, Check Box,
Button, Radio Group,
and List Item

Canvas–view

For more information, see the property descriptions for Direction,
Alignment, Reading Order, and Initial Keyboard State in the Oracle
Forms Reference Manual, Vol. 2, Chapter 5, ”Properties.”

Most properties related to bidirectional function are programmatically
gettable and settable. For more information, see the corresponding
built–in subprogram descriptions. For example, for information about
getting the value of the Direction property for buttons, consult the
description for GET_ITEM_PROPERTY in the Oracle Forms Reference
Manual, Vol. 1, Chapter 3, ”Built–ins.”

Oracle Reports and Oracle Graphics also implement bidirectional
support, so you can have reports and graphics that include both local
and Roman languages.

B – 20 Forms Advanced Techniques

A P P E N D I X

C

T

C – 1Analyzing Performance with PECS

PECS:
Performance Event
Collection Services

his chapter discusses Performance Event Collection Services
(PECS) as it affects developers of Oracle Forms applications. Topics
covered in this chapter include:

• About PECS C – 2

• Collecting Performance Data on Oracle Forms Events C – 4

• Collecting Performance Data on Application–Specific Events
C – 5

• Collecting Object Coverage Data C – 10

• Collecting Line Coverage Data C – 10

• Using the PECS Assistant C – 11

• PECS Built–ins C – 16

C – 2 Forms Advanced Techniques

About PECS

As an Oracle Forms developer or a system administrator, you may
have questions about the performance of both Oracle Forms and your
own applications. Oracle Forms’ Performance Event Collection Services
(PECS) will help you answer questions such as these:

• How much elapsed time does it take to use LOVs on three fields
in my form?

• How long does it take to execute these triggers?

• How many invoices per hour can we produce?

• Have I tested all the triggers in my form?

• Have I tested all the lines of my PL/SQL code?

The PECS System

The PECS system consists of three main parts:

• PECS built–ins, used to define application–specific events

• PECS Assistant, an Oracle Forms application you can use to load
and view PECS data

• PECS reports, which let you view the results of your tests on line
or print out hard copy

C – 3Analyzing Performance with PECS

PECS Measurements

PECS is a low–overhead performance measurement tool you can use to
perform the following tasks:

• Measure resource usage for Oracle Forms events

The simplest way to use PECS is to measure only Oracle Forms
events. If you only want to measure Oracle Forms events, you
do not need to add PECS built–ins to your PL/SQL code because
Oracle Forms includes pre–defined PECS events to measure the
performance of objects such as triggers, windows, canvases,
LOVs, and alerts.

• Measure resource usage for application–specific events (CPU
time and elapsed time)

If you add calls to PECS built–ins to your PL/SQL code, you can
measure the performance of application–specific events, as well
as Oracle Forms events.

• Locate performance problems

• Measure coverage

When you’re testing an Oracle Forms application, you may be
interested in what kind of coverage your test cases provide. The
PECS Object Coverage Report gives you information about the
coverage provided by your current test suite.

The PECS Line Coverage Report provides information about
coverage of PL/SQL code.

C – 4 Forms Advanced Techniques

Collecting Performance Data on Oracle Forms Events

Because Oracle Forms includes pre–defined PECS events, you can
measure both performance and coverage without making any changes
in your application. PECS measures:

• The performance of the entire application, triggers, and LOVs

• The coverage of procedures, windows, canvases, editors, and
alerts, and line–by–line coverage for PL/SQL code

The process has three steps:

1. Run your application with PECS on to collect performance data in
a .DAT file, using the following command:

f45run module=myform userid=scott/tiger pecs=on

Or, at the Runform Preferences dialog ”Collect PECS data?” option,
select ON.

Running Oracle Forms with PECS creates a PECS binary file with a
default name of the module name with a .DAT extension:

myform.dat

The data is written to a file rather than directly to the database.

2. Load data from the .DAT file and your form into the database.

Use the PECS Assistant to load both your form and the PECS
binary (.DAT) file into the database.

For information about the PECS Assistant, see ”Using the PECS
Assistant” later in this chapter.

3. Analyze the data.

Once the PECS database file is created, review the results:

• Use the PECS Assistant Data or Summary windows to view the
results on line, or

• Run the Performance, Object Coverage, or Line Coverage
Reports and view the results on line or print out hard copy

Although you don’t need to use the PECS built–ins to collect
performance data on Oracle Forms events, you can use the built–ins to
limit the focus of your PECS experiments. For example, if you are only
interested in LOV events, you can use the PECS.DISABLE_CLASS
built–in to turn off all events except the LOV events.

C – 5Analyzing Performance with PECS

Collecting Performance Data on Application–Specific Events

To use PECS to measure application–specific events, first define the
events you want to measure by adding PECS built–ins to your PL/SQL
code. (For best results, define only a few most important events.)

Using PECS to collect performance data on application–specific events
is a five–stage process:

• Group application–specific events.

• Define the events you want to measure, using PECS built–ins.

• Run your application with PECS.

• Load the form and the PECS data from the file into the database.

• Analyze the data.

Group Application–Specific Events

Application–specific events are the business transactions that you
define: for example, in a banking application, you might define
Deposit, Withdrawal, and Transfer events.

You can group like events into classes in order to create reports that
display your test results meaningfully. In a banking application, you
might create two classes:

• A Banking class, composed of three events:

– Deposit event

– Withdraw event

– Transfer event

• A Customer class, composed of three events:

– AddCustomer event

– DeleteCustomer event

– ChangeCustomer event

C – 6 Forms Advanced Techniques

Define PECS Events

Once you’ve chosen the set of events you want to measure, you’ll
prepare your application to use PECS by adding PECS built–ins to your
PL/SQL code:

• Start PECS:

– At design time, by adding the PECS.COLLECTOR built–in
to your application (to collect data on application–specific
events only), or

– At runtime, by invoking PECS from the command line (to
collect data on Oracle Forms events, as well as on
application–specific events)

• Add any classes and events you need with the
PECS.ADD_CLASS and PECS.ADD_EVENT built–ins

• Enable the class or specific event you want to measure using the
PECS.ENABLE_CLASS built–in

• Define the events you want to measure:

– Bracket them with the PECS.START_EVENT and
PECS.END_EVENT built–ins, or

– Mark them with PECS.POINT_EVENT

To invoke PECS from the command line, set PECS=ON for object
coverage and PECS=FULL for object and line coverage.

Note: You can use PECS built–ins wherever you can use other Oracle
Forms built–ins: triggers, user–named routines, menu PL/SQL
commands, and stored procedures. While you can’t directly measure
the duration of a PL/SQL procedure, you can define a trigger that calls
the procedure and then measure the duration of that trigger.

For more information about the PECS built–ins, refer to the section
”PECS Built–ins” later in this chapter.

C – 7Analyzing Performance with PECS

Run Application with PECS

Once you have added PECS built–ins to your application, when you
run the form PECS automatically creates a binary file containing the
test data:

• If you started PECS from the command line, the name of the
PECS binary file defaults to the form name with a .DAT
extension: myform.dat .

• If you started PECS by adding the PECS.COLLECTOR built–in
to your application, the name of the PECS binary file defaults to
the name of the first class you specified with the
PECS.ADD_CLASS built–in: banking.dat .

Load the Form and the PECS Data into the Database

Use the PECS Assistant application to load both your form and the
PECS binary file into the database. For more information, see ”Using
the PECS Assistant” later in this chapter.

Note: Unless you want coverage statistics, PECS does not require that
you store your form in the database. However, PECS depends on some
of the tables that are created automatically by the Forms 4.5 table
scripts that are run during installation when you choose the ”Create
database tables” option. If you did not choose that option, you or your
DBA must logon as SYSTEM and run those SQL scripts, which are
found in the Oracle Forms SQL directory.

Analyze the Data

Once the PECS .DAT file has been loaded into the database, you can
review the results using the PECS Assistant:

• Use the Data or Summary windows to view the results on line,
or

• Run the Performance, Object Coverage, or Line Coverage
Reports and view the results on line or print out hard copy

For more information, see ”PECS Reports” later in this chapter.

C – 8 Forms Advanced Techniques

Next Steps

Once you’ve analyzed the data, you may decide to proceed in any of
several directions:

• If you are debugging, you may want to change the application
and run the same tests again.

• If you are testing performance, you may want to create multiple
runs of the same test, average the statistics, and compare results
with previous tests.

• If you are testing coverage, you may want to change the test to
add test cases to cover more conditions, then re–run the test and
compare results with earlier tests.

For more information about using PECS data files, see ”Using .DAT
Files” later in this chapter.

Example:

Assume that you’ve decided to measure both internal Oracle Forms
events and three application–specific events: Deposit, Withdrawal, and
Transfer. This example illustrates adding the PECS built–ins to define
these events to PECS.

(Because you want to measure both types of events, you could have
started PECS on the command line, but this example includes starting
PECS with the PECS.COLLECTOR built–in for purposes of
demonstration.)

PACKAGE globals IS

/* We will create a package of global variables instead of */

/* local variables because the pecs.event and pecs.class types */

/* may be spread across various procedures, triggers, and */

/* even forms. */

/* */

/* Add the classes. */

/* */

banking PECS.class := PECS.Add_Class(’Banking’);

myform PECS.class := PECS.Add_Class(PECS.FORMS);

/* */

/* Add the events for the class ’Banking’. */

/* No need to add events for the class ’Form’ */

/* because they are pre–defined internal events. */

withdraw pecs.event := PECS.Add_Event(banking,’Withdraw’);

deposit pecs.event := PECS.Add_Event(banking,’Deposit’);

transfer pecs.event := PECS.Add_Event(banking,’Transfer’);

END globals;

C – 9Analyzing Performance with PECS

/* Trigger: When–New–Form–Instance */

/* Enable PECS */

BEGIN

PECS.Collector(COLLECT_ON);

/* */

/* Enable the classes */

/* */

PECS.Enable_Class(GLOBALS.banking);

/* */

/* After the forms class has been enabled, */

/* internal forms events will be measured. */

/* NOTE: This line is not needed if you use the */

/* PECS=on command line option. */

PECS.Enable_Class(GLOBALS.myform);

END;

PROCEDURE do_withdraw

/* */

/* This is the code that does the Withdraw Event. */

/* */

DECLARE

withdraw_handle number;

BEGIN

/* */

/* Start the Withdraw event . */

/* */

withdraw_handle := PECS.Start_Event(GLOBALS.withdraw,

’Withdrawing cash’);

.

. /do the withdraw/

.

PECS.End_Event(GLOBALS.withdraw,withdraw_handle);

END;

C – 10 Forms Advanced Techniques

Collecting Object Coverage Data

When you’re testing an Oracle Forms application, you can also use
PECS as a quality assurance tool. The PECS Object Coverage Report
lets you evaluate the percentage of coverage provided by your current
set of test cases.

When you run PECS to collect information on Oracle Forms events,
either separately or in conjunction with collecting information on
application–specific events, you can run the Object Coverage Report as
well as the Performance Report.

By examining the Object Coverage Report, you can see whether your
current set of test cases exercises all of the Oracle Forms objects in your
application. For example, you can check whether each trigger,
procedure, alert, window, and canvas are visited during execution of
your current set of test cases, and find any areas where you may need
to construct new test cases for increased coverage.

Note: If you want coverage statistics, you must store your form in the
database.

Collecting Line Coverage Data

In addition to testing for simple coverage of test cases, you can also test
for line–by–line coverage of PL/SQL code in triggers and procedures.
The PECS Line Coverage Report lets you evaluate the percentage of
PL/SQL line coverage provided by your current set of test cases.

To obtain line coverage data:

• Generate the form with debug=ON.

• Run with PECS=FULL.

• In the PECS Assistant, select the Line Coverage check box.

• Select the Line Coverage Report.

Note: To collect line coverage data, you must use the PECS command
line option (PECS=FULL) rather than invoking PECS with the
PECS.ENABLE_CLASS built–in.

C – 11Analyzing Performance with PECS

Using the PECS Assistant

The PECS Assistant application provides the following functions:

To do this: Use this window:

Load PECS data into tables Load

Display data Data, Summary

Display information about classes and ex-
periments

Class, Experiment

For an overview of each window and detailed information about each
field, click on the Help button.

About the PECS Hierarchy

The PECS Assistant asks you to specify names of occurrences, events,
classes, runs, and experiments.

These terms are used in the PECS hierarchy as follows:

This group: Consists of:

Experiment One or more test runs. Experiments own runs.

Run One pass through your application from start to finish. A
single .DAT file maps to a single run of an experiment.

Class A group of related events. Classes own events.

Event An application–specific or form–specific transaction with a
defined start and end.

Occurrence One example of a given event.

C – 12 Forms Advanced Techniques

Steps for Using the PECS Assistant

Once you’ve run a form with PECS enabled, you’re ready to use the
PECS Assistant application:

1. At the system prompt, enter this command to run the PECS
Assistant:
f45run module=pecs

The PECS Assistant displays the Main window. You can navigate to
other windows using the buttons or the commands on the
Windows menu.

2. Click Load.

The PECS Assistant displays the Load window.

3. Fill in the ”PECS Data” section to select the experiment you want to
load into the database.

If the file does not exist, an Open error message is displayed.

Note: Fill in the ”Connect String” section only if you want to use a
connect string that differs from the one you used to start the form.
For more information, press Help.

4. Check the appropriate check boxes.

The ”Load PECS data in the database” and ”Summarize data”
check boxes are checked, as default.

If you want to include line coverage data, check the ”Prepare for
Line Coverage” check box.

Note: Preparing for line coverage is a time–consuming task, so the
”busy” cursor will be displayed for a while.

If you want to delete the detailed data once the summary files are
created, check the ”Delete details after summary” check box.

5. Click Start.

PECS displays confirmation messages for each check box you’ve
selected.

Once you’ve accepted each confirmation, PECS processes the data,
displaying status messages in the ”Status” area during processing,
and prepares the results for you to examine.

6. To view the results, choose Navigation–>Experiment or
Navigation–>Class.

C – 13Analyzing Performance with PECS

7. From the Experiment or Class window, query to select the
experiment or class you want to review.

PECS displays the results of your query.

8. Highlight the specific experiment or class.

9. Click Zoom In.

PECS displays the Summary window, showing the summarized
version of the data. The Summary window displays the
information in a format similar to the PECS reports.

10. Click Zoom In again to examine the detailed results of a PECS
experiment.

PECS displays the detailed results in the Data window.

PECS Reports

To run the PECS reports, choose the Reports menu:

• Choose the Performance Report to show elapsed time and CPU
time.

• Choose the Object Coverage Report to show that certain events
or occurrences have been reached.

• Choose the Line Coverage Report to show coverage of your
PL/SQL code.

By default, the Performance Report displays data in the sequence of
columns as displayed in the Data or Summary screen. To change the
sequence in the report, change the Order By clause in the Data or
Summary Performance Report window.

PECS Maintenance

To review data about classes and experiments you defined, return to
the Main window and click Class or Exp (Experiment):

• Use the Class window to view data about the classes and events
you defined using the PECS built–ins.

You can perform minimal maintenance on classes using this
window. For instance, you can change class names and add
version information.

• Use the Experiment window to view data about the experiments
and runs you defined using PECS built–ins.

C – 14 Forms Advanced Techniques

You can perform minimal maintenance on experiments using this
window. For instance, you can change experiment names and
add comment information. (You specified the experiment name
earlier, in the Load window or on the command line using the –n
option.)

Using .DAT Files

PECS allows you to load multiple previously–created .DAT files in
order to re–run experiments or to average the performance statistics.
For example, for Form A, you might use .DAT files in a sequence like
this:

• Experiment #1, Run #1: Produces the original A.DAT file. You
evaluate the coverage results of Run #1, and decide to add more
test cases to improve the coverage.

• Experiment #1, Run #2: Produces a new A.DAT file.

• When you also load the results of Run #2 to the database, check
Summarize on the Load window to summarize the data from all
runs of this experiment.

Using PECSLOAD

You can also access the PECS system directly from the command line,
without using the PECS Assistant. Invoke the PECSLOAD utility from
the command line to load the PECS binary file into the database.
During PECSLOAD, both classes and events will also be saved to the
database, if they are not already there.

The syntax for the PECSLOAD command requires three arguments:
the module name, the experiment name or number, and
userID/password.

Example 1: Using PECSLOAD with an experiment name:

PECSLOAD –f mymod.dat –n my_experiment scott/tiger

Example 2: Using PECSLOAD with an experiment number:

PECSLOAD –f mymod.dat –e 3 scott/tiger

C – 15Analyzing Performance with PECS

Location of the PECS Data File

When you use the PECSLOAD command, PECS must first locate where
the binary (.DAT) file was saved. The PECS data file is usually saved in
a temporary directory set by an environment variable, as shown below:

Environment PECS Default Directory/Environment Variable

MS Windows TMP

UNIX FORMS_PECS

VMS SYS$SCRATCH

If the environment variable is not set, PECS uses the current working
directory.

If you issue the PECSLOAD command and receive an error message
similar to ”Error opening file,” probably PECS is searching for the data
file and cannot find it. In this case, re–issue the PECSLOAD command
and provide the full pathname in place of the module name.

PECS Database Tables

You may want to consult the PECS database tables to perform data
manipulation or obtain specific PECS information, such as an
experiment name or number. PECS uses the following database tables:

• PECS_run

• PECS_experiment

• PECS_class

• PECS_class_events

• PECS_data

• PECS_summary

• PECS_plsql

Use SQL commands to obtain a list of columns in each table.

C – 16 Forms Advanced Techniques

PECS Built–ins

The PECS built–ins allow you to define application–specific events to
the PECS system:

To do this: Use this PECS built–in:

Start and stop PECS PECS.COLLECTOR

Register classes and events PECS.ADD_CLASS
PECS.ADD_EVENT

Enable and disable classes PECS.ENABLE_CLASS
PECS.DISABLE_CLASS

Define event instances PECS.START_EVENT
PECS.END_EVENT
PECS.POINT_EVENT

Syntax:

Built–in Type:

Returns:

Description:

Parameters:

Usage Notes:

Example:

C – 17Analyzing Performance with PECS

PECS.ADD_CLASS

PECS.ADD_CLASS(class_name);
PECS.ADD_CLASS(class_type);

unrestricted procedure

PECS.CLASS

PECS.ADD_CLASS creates the class, or group of events, in PECS, and
returns the ID for this class. Use this class ID to identify the class in
future calls to PECS. The datatype of the class ID is PECS.CLASS.

Specifies the type of class to add. Valid numeric
constant for this parameter:

PECS.FORMS Specifies Oracle Forms.

Specifies the name of the class to add. Specify the
CHAR class name for application–specific classes
that do not use one of the class types listed above.

If you started PECS by adding the PECS.COLLECTOR built–in to your
application, the name of the PECS binary file defaults to the name of
the first class you specified with the PECS.ADD_CLASS built–in:
banking.dat. (If you started PECS from the command line, the name of
the PECS binary file defaults to the form name with the .DAT
extension: myform.dat.)

/*
/* This will add the class FORMS */

/* */

forms_class pecs.class := PECS.Add_Class(pecs.FORMS);

/* */

/* This will add the class ’Banking’ */

/* */

banking_class pecs.class := PECS.Add_Class(’Banking’);

class_type

class_name

Syntax:

Built–in Type:

Returns:

Description:

Parameters:

Example:

C – 18 Forms Advanced Techniques

PECS.ADD_EVENT

PECS.ADD_EVENT(class_id, event_type);
PECS.ADD_EVENT(class_id, event_description);

unrestricted procedure

PECS.EVENT

PECS.ADD_EVENT adds an event to a specified class.

For an Oracle Forms event, specify the event type from the list of
Oracle Forms event types. For an application–specific event, specify
the event using event_description, which must be unique among events
in the class.

Specifies the ID of this class. The class ID is
created with a call to PECS.ADD_CLASS, and is of
datatype PECS.CLASS.

For Oracle Forms events, specifies the event type.
Valid numeric constants for this parameter are
PECS.LINE, PECS.FORMS_TRIGGER,
PECS.FORMS_LOV, PECS.FORMS_20TRIGGER
(Oracle Forms V2–style trigger event),
PECS.FORMS_PROCEDURE,
PECS.FORMS_ALERT, PECS.FORMS_CANVAS,
PECS.FORMS_WINDOW, PECS.FORMS_EDITOR.

For application–specific events, specify the
event_type from the PECS_EVENTS table, or use the
event_description parameter.

For application–specific events, specifies the event.
The description is limited to 32 datatype CHAR
characters.

/*
/* This will add the class ’Banking’ */

/* */

banking_class pecs.class := PECS.Add_Class(’Banking’);

/* */

/* This will add the event Withdraw. */

/* banking_class was previously defined by PECS.ADD_CLASS */

withdraw pecs.event := PECS.Add_Event(banking_class, ’Withdraw’);

class_id

event_type

event_description

Syntax:

Built–in Type:

Description:

Parameters:

Usage Notes:

Example:

C – 19Analyzing Performance with PECS

PECS.COLLECTOR

PECS.COLLECTOR(collector_status);

unrestricted procedure

Use PECS.COLLECTOR to turn PECS on or off. This built–in allows
you to start PECS later, if you haven’t invoked PECS from the
command line. PECS.COLLECTOR needs to be called only once per
session.

A NUMBER parameter that specifies whether
PECS is on or off:

PECS.COLLECT_ON Turns the collector on.

PECS.COLLECT_OFF Turns the collector off.

• You don’t need to use PECS.COLLECTOR if you turned PECS on
using the command line option pecs=on.

• Although you can toggle the status of PECS.COLLECTOR, doing this
may produce mismatched events. For example, if PECS is turned off
after a trigger event has started, there may be no corresponding end
event. During the loading of the .DAT file, PECS will detect this and
issue a warning saying that a start event is missing an end event, or
vice versa.

PECS.COLLECTOR(pecs.collect_on);

collector_status

Syntax:

Built–in Type:

Description:

Parameters:

Example:

C – 20 Forms Advanced Techniques

PECS.DISABLE_CLASS

PECS.DISABLE_CLASS(class_id);
PECS.DISABLE_CLASS(class_id, event_type);

PECS.DISABLE_CLASS(class_id, event_id);

unrestricted procedure

To disable all of the events associated with a class, specify only the
class_id:

PECS.DISABLE_CLASS(class_id);

To disable only a specific event, supply the class_id and the event_type
or event_id:

PECS.DISABLE_CLASS(class_id, event_type);

PECS.DISABLE_CLASS(class_id, event_id);

Specifies the ID of this class. The class ID is
created with a call to PECS.ADD_CLASS, and is of
datatype PECS.CLASS.

For Oracle Forms events, specifies the event type.
Valid numeric constants for this parameter are
PECS.LINE, PECS.FORMS_TRIGGER,
PECS.FORMS_LOV, PECS.FORMS_20TRIGGER
(Oracle Forms V2–style trigger event),
PECS.FORMS_PROCEDURE,
PECS.FORMS_ALERT, PECS.FORMS_CANVAS,
PECS.FORMS_WINDOW, PECS.FORMS_EDITOR.

Specifies the ID of this event name. The event ID is
created with a call to PECS.ADD_EVENT, and is of
datatype PECS.EVENT.

/* Disable the internal Oracle Forms LOV event. */

PECS.Disable_Class(forms_class, PECS.FORMS_LOV);

/* Disable the Withdraw event for Banking_class. */

/* Banking_class was previously defined with PECS.ADD_CLASS */

/* Withdraw was previously defined with PECS.ADD_EVENT */

PECS.Disable_Class(banking_class, withdraw);

class_id

event_type

event_id

Syntax:

Built–in Type:

Description:

Parameters:

Example:

C – 21Analyzing Performance with PECS

PECS.ENABLE_CLASS

PECS.ENABLE_CLASS(class_id) ;
PECS.ENABLE_CLASS(class_id, event_type);

PECS.ENABLE_CLASS(class_id, event_id);

unrestricted procedure

To enable all of the events associated with a class, specify only the
class_id:

PECS.ENABLE_CLASS(class_id);

To enable only a specific event, supply the class_id and the event_type or
event_id:

PECS.ENABLE_CLASS(class_id, event_type);

PECS.ENABLE_CLASS(class_id, event_id);

Specifies the ID of this class. The class ID is
created with a call to PECS.ADD_CLASS, and is of
datatype PECS.CLASS.

For Oracle Forms events, specifies the event type.
Valid numeric constants for this parameter are
PECS.LINE, PECS.FORMS_TRIGGER,
PECS.FORMS_LOV, PECS.FORMS_20TRIGGER
(Oracle Forms V2–style trigger event),
PECS.FORMS_PROCEDURE,
PECS.FORMS_ALERT, PECS.FORMS_CANVAS,
PECS.FORMS_WINDOW, PECS.FORMS_EDITOR.

Specifies the ID of this event name. The event ID is
created with a call to PECS.ADD_EVENT, and is of
datatype PECS.EVENT.

/* Enable the internal Oracle Forms LOV event. */

PECS.Enable_Class(forms_class);

/* Enable the Withdraw event for Banking_class. */

/* Banking_class was previously defined with PECS.ADD_CLASS */

/* Withdraw was previously defined with PECS.ADD_EVENT */

PECS.Enable_Class(banking_class, withdraw);

class_id

event_type

event_id

Syntax:

Built–in Type:

Description:

Parameters:

Example:

C – 22 Forms Advanced Techniques

PECS.END_EVENT

PECS.END_EVENT(event_id, event_handle);

unrestricted procedure

Marks the end of a PECS event.

Specifies the ID of this event name. The event ID is
created with a call to PECS.ADD_EVENT, and is of
datatype PECS.EVENT.

Specifies handle of this event occurrence. The
event handle is created with a call to
PECS.START_EVENT, and is of datatype
NUMBER.

/* Measure the performance of the Withdraw event */
/* Banking_class was previously defined with PECS.ADD_CLASS */

/* */

withdraw_handle := PECS.Start_Event(withdraw, ’Withdrawing Cash’);

.

. /do the withdraw/

.

PECS.End_Event(withdraw, withdraw_handle);

event_id

event_handle

Syntax:

Built–in Type:

Description:

Parameters:

Usage Notes:

Example:

C – 23Analyzing Performance with PECS

PECS.POINT_EVENT

PECS.POINT_EVENT(event_id, event_comment);

unrestricted procedure

Use PECS.POINT_EVENT to determine whether an event was reached
during code execution.

Specifies the ID of this event name. The event ID is
created with a call to PECS.ADD_EVENT, and is of
datatype PECS.EVENT.

A CHAR comment to identify the event.

• Use PECS.POINT_EVENT when you need to know only that a given
application–specific event occurred, rather than its duration.

• You can use PECS.POINT_EVENT to gather coverage data for
specific parts of your application where you insert PECS point
events.

/* Start the Withdraw event . */
/* */

...

...

IF (do_withdraw = TRUE) then

...

message(’Success collecting data for event Withdraw’);

PECS.Point_Event(GLOBALS.withdraw,’Withdraw Success’);

ELSE

...

 message(’Error collecting data for event Withdraw’);

PECS.Point_Event(GLOBALS.withdraw,’Withdraw Error’);

END IF;

event_id

event_comment

Syntax:

Built–in Type:

Returns:

Description:

Parameters:

Usage Notes:

Example:

C – 24 Forms Advanced Techniques

PECS.START_EVENT

PECS.START_EVENT(event_id,event_ comment);

unrestricted procedure

NUMBER

Marks the beginning of a PECS event. PECS.START_EVENT returns a
unique identifier for this occurrence of this particular event, which is
needed to end the event.

Specifies the event ID. Datatype is PECS.EVENT.

A CHAR comment to identify the event.

PECS.START_EVENT returns an identifier, or handle, to the event that
must be used with PECS.END_EVENT to mark the end of the event.

/* Measure the performance of the Withdraw event */
/* Banking_class was previously defined with PECS.ADD_EVENT */

/* */

withdraw_handle := PECS.Start_Event(withdraw, ’Withdrawing Cash’);

.

. /do the withdraw/

.

PECS.End_Event(withdraw, withdraw_handle);

event_id

event_comment

Index – 1

Index

B
Background Color, A – 18
Beveling on Macintosh, 9 – 11
Bidirectional applications, B – 18
Blocks

Locking Mode property, 4 – 5
Transactional Triggers property, 4 – 15

C
C language foreign functions, 3 – 4, 13 – 4
C programs, calling Oracle Forms from, 8 – 22
CALL_FORM

invoking, 5 – 2
restrictions with OPEN_FORM, 5 – 13
stack, 5 – 10

Capacity planning, C – 3
Character mode

aligning boilerplate text, 9 – 13
how to run in character mode, 9 – 12
portability, 9 – 12
restricted properties, 9 – 14

Chart items, 8 – 8
Closing independent form, 5 – 4
Color in portable applications, 9 – 7
COMMIT_FORM, 4 – 29
Coordinate System property, 9 – 6
Count Query processing, 4 – 20
Coverage measurement, C – 3
CREATE_QUERIED_RECORD, 4 – 26

Cursor Mode form property, 4 – 6
Custom item type, 11 – 3

D
Database

constraints, 2 – 20
Database Trigger Editor, 2 – 18
error handling, 1 – 8
triggers, 2 – 14

Default parameter list, 5 – 24
Do–the–right–thing built–ins, 4 – 12
Double–byte characters, B – 4
Doubleclick event, 6 – 4
Dynamic Data Exchange

DDE connect/disconnect functions, 12 – 3
DDE datatype translation functions, 12 – 4
DDE support functions, 12 – 3
DDE transaction functions, 12 – 3
DDE.APP_BEGIN, 12 – 4
DDE.APP_END, 12 – 6
DDE.APP_FOCUS, 12 – 7
DDE.EXECUTE , 12 – 8
DDE.GETFORMATNUM, 12 – 9
DDE.GETFORMATSTR, 12 – 10
DDE.INITIATE , 12 – 11
DDE.POKE, 12 – 12
DDE.REQUEST, 12 – 13
DDE.TERMINATE, 12 – 14
exceptions, 12 – 16
MS Windows predefined formats, 12 – 15

Index – 2 Forms Advanced Techniques

E
Error handling, 1 – 8
Exception handling in triggers, 1 – 2
EXEC ORACLE statement, 3 – 11
EXEC SQL statement, 3 – 6
EXEC TOOLS GET CONTEXT statement, 3 –

10
EXEC TOOLS GET statement, 3 – 7
EXEC TOOLS MESSAGE statement, 3 – 9
EXEC TOOLS SET CONTEXT statement, 3 – 11
EXEC TOOLS SET statement, 3 – 8

F
F45XTB.DEF, 3 – 19
F45XTB.DLL, 3 – 17
Fill Pattern, A – 18
FIND_FORM, 5 – 7
FMRUSW.RES resource file, A – 3
Font aliasing, 9 – 9
Font attributes, A – 18
Foreground Color, A – 18
Foreign functions

associating with PL/SQL subprogram, 13 – 7
building a DLL, 3 – 20
complex data types, 13 – 11
creating PL/SQL interface, 13 – 6
initializing foreign functions, 13 – 6
invoking foreign functions, 3 – 14, 13 – 9
mimicking with PL/SQL, 13 – 8
multiple DLLs, 3 – 21
non–ORACLE, 3 – 4, 13 – 4
obtaining context from Oracle Forms, 3 – 10
OCI (ORACLE Call Interface), 3 – 4, 13 – 4
ORACLE Precompiler, 3 – 4, 13 – 4
passing messages to Oracle Forms, 3 – 9
passing parameter values, 13 – 10
performing ORACLE commands, 3 – 11
performing SQL commands, 3 – 6
PL/SQL interface, 13 – 2
retrieving values from Oracle Forms, 3 – 7
returning values, 13 – 10
saving context to Oracle Forms, 3 – 11
sending values to Oracle Forms, 3 – 8

Form Module
Cursor Mode property, 4 – 6
Savepoint Mode property, 4 – 7

Form parameters, 5 – 23
FORM_FAILURE function, 1 – 5
FORM_FATAL function, 1 – 5
FORM_SUCCESS function, 1 – 5
FORM_TRIGGER_FAILURE exception, 1 – 6
FormModule type, 5 – 8
FORMS45_USEREXIT, 3 – 21

G
GET, 3 – 7
GET CONTEXT, 3 – 10
Global variables

in multiple–form application, 5 – 23
quitting from called form, 5 – 11

GUI standards, 9 – 5

I
IAPXTB, 3 – 12
Icons, 9 – 10
IFZCAL, 8 – 22
Independent forms, 5 – 4
Instance identifier, 5 – 8

K
Key bindings

defining key bindings for triggers, A – 6
Oracle Forms runform key bindings, A – 8
remapping Oracle Forms key bindings, A – 2

Key Mode block property, 4 – 3

L
Locking, 4 – 36
Logical attributes

about attribute precedence, A – 13
about logical attributes, A – 13

Index – 3

descriptions, A – 20
Edit Attribute Node dialog, A – 18
modifying logical attributes, A – 16

LOGON_SCREEN, 4 – 19

M
Methods (VBX), 11 – 11
Middle Eastern language support, B – 18
Mouse events

about mouse events, 6 – 2
in chart items, 8 – 13
mouse system variables, 6 – 3
mouse triggers, 6 – 2

MS Windows SDK, 13 – 16
Multi–byte characters, B – 4
Multiple–form applications

about multiple–form applications, 5 – 2
closing independent forms, 5 – 4
opening independent forms, 5 – 4

N
National Language Support

bidirectional applications, B – 18
format masks, B – 10, B – 12
language and territory conventions, B – 10
message file names, B – 14
MODULE_NLS_LANG parameter, B – 8
multi–byte characters, B – 4
NLS_LANG environment variable, B – 5
Oracle Translation Manager, B – 2
screen design considerations, B – 13
USER_NLS_LANG parameter, B – 8
using TO_DATE instead of COPY, B – 10

NEW_FORM, 5 – 2, 5 – 9
Non–ORACLE data sources, 3 – 4, 13 – 4

O
OCI foreign functions, 3 – 4, 13 – 4
ODBC, 4 – 2

OLE
about OLE, 10 – 2
about OLE automation, 10 – 7
about OLE objects, 10 – 3
about OLE servers and containers, 10 – 4
activation properties, 10 – 9
breaking a link, 10 – 19
changing a link, 10 – 19
choosing embedding or linking, 10 – 7
container properties, 10 – 9
converting OLE objects, 10 – 20
creating an OLE container, 10 – 12
displaying OLE objects, 10 – 15
editing OLE objects, 10 – 17
embedding an OLE object, 10 – 14
external activation, 10 – 6
in–place activation, 10 – 5
linking an OLE object, 10 – 14
OLE object data type, 10 – 8
opening a linked source file, 10 – 18
popup menu properties, 10 – 9
registration database, 10 – 4
setting OLE properties in the Designer, 10 – 9
storing OLE objects in the database, 10 – 8
tenant properties, 10 – 9
updating a linked object, 10 – 18
using OLE at runtime, 10 – 11

On–Check–Unique trigger, 4 – 30
On–Close trigger, 4 – 22
On–Column–Security trigger, 4 – 35
On–Commit trigger, 4 – 30
On–Count trigger, 4 – 20
On–Delete trigger, 4 – 29
On–Fetch trigger, 4 – 22
On–Insert trigger, 4 – 30
On–Lock trigger, 4 – 36
On–Logon trigger, 4 – 18
On–Logout trigger, 4 – 18
On–Savepoint trigger, 4 – 29
On–Select trigger, 4 – 22
On–Sequence–Number trigger, 4 – 36
On–Update trigger, 4 – 30
Open Gateway, 4 – 2

Index – 4 Forms Advanced Techniques

OPEN_FORM, 5 – 2, 5 – 4
ORA_FFI, 13 – 2
Oracle Book, 8 – 5
ORACLE Call Interface foreign functions, 3 –

4, 13 – 4
Oracle Graphics

invoking from Oracle Forms, 8 – 3
OG integration package, 8 – 15
OG.CLOSE, 8 – 15
OG.GETCHARPARAM, 8 – 15
OG.GETNUMPARAM, 8 – 16
OG.INTERPRET, 8 – 16
OG.MOUSEDOWN, 8 – 17
OG.MOUSEUP, 8 – 18
OG.OPEN, 8 – 20
OG.PLL integration library, 8 – 9
OG.REFRESH, 8 – 21
passing LOGON parameter, 8 – 4

Oracle Open Client Adapter
about OCA and ODBC, 14 – 2
datasource support, 14 – 10
ODBC support, 14 – 1
restrictions, 14 – 12
setting up applications, 14 – 8
UBT utility, 14 – 20
using with Oracle Forms, 14 – 5

ORACLE Precompiler foreign functions, 3 – 4,
13 – 4

Oracle Reports, 8 – 3
Oracle Terminal

about resource files, A – 2
using OT to modify logical attributes, A – 13
using OT to remap key mappings, A – 2

Oracle Translation Manager, B – 2
OSSWEP.OBJ, 3 – 19

P
Parameter lists, 5 – 23, 8 – 6
Parameters

Form, 5 – 23
passing to other products, 8 – 5

Pattern attributes, A – 18

PECS
about PECS, C – 2
example, C – 8
experiments, C – 11
line coverage, C – 10
object coverage, C – 10
PECS Assistant, C – 11
PECS built–ins, C – 16
PECS Reports, C – 13
PECSLOAD, C – 14
performance testing, C – 3

PL/SQL
access to foreign functions, 13 – 6
access to OLE objects, 10 – 7
exception handling, 1 – 2
interface to foreign functions, 13 – 2
packages, 2 – 3

Pointers
GET CONTEXT statement, 3 – 10
SET CONTEXT statement, 3 – 11

Portability
about portability, 9 – 2
character–mode considerations, 9 – 12
font aliasing, 9 – 9
fonts, 9 – 8
icons, 9 – 10
porting process outline, 9 – 4
using color, 9 – 7

Post–Database–Commit trigger, 4 – 30
Post–Delete trigger, 4 – 29
Post–Forms–Commit trigger, 4 – 30
Post–Insert trigger, 4 – 30
Post–Logon trigger, 4 – 18
Post–Logout trigger, 4 – 18
Post–only mode, 5 – 15
Post–Query trigger, 4 – 22
Post–Select trigger, 4 – 22
Post–Update trigger, 4 – 30
Posting, 5 – 15
Pre–Commit trigger, 4 – 29
Pre–Delete trigger, 4 – 29
Pre–Insert trigger, 4 – 30
Pre–Logon trigger, 4 – 18

Index – 5

Pre–Logout trigger, 4 – 18
Pre–Query trigger, 4 – 20, 4 – 22
Pre–Select trigger, 4 – 20, 4 – 22
Pre–Update trigger, 4 – 30
Precompiler Statements, 3 – 5, 13 – 5
Procedures (stored), 2 – 2

Q
QA testing, C – 3
Query Only forms, 5 – 12

R
Rollback mode, 5 – 17
ROWID, 4 – 3
RUN_PRODUCT, 8 – 3

S
Savepoints

about savepoints, 5 – 16
savepoint and rollback processing, 4 – 33
Savepoint Mode property, 4 – 7
Savepoint_Name property, 4 – 34

Semitic language support, B – 18
Sessions (database), 5 – 6
SET, 3 – 8
SET CONTEXT, 3 – 11
Single–click event, 6 – 4
SQL statements in foreign functions, 3 – 6
Standards, 9 – 5
Stored procedures

about stored procedures, 2 – 2
calling stored procedures, 2 – 9
creating stored procedures, 2 – 5
restrictions for stored procedures, 2 – 3
stored program unit editor, 2 – 6

System variables (mouse), 6 – 3

T
Template forms, 9 – 5
Testing performance, C – 3
Timers

creating timers, 7 – 2
deleting timers, 7 – 6
programmatic control, 7 – 5
usage rules, 7 – 3

Transactional options (Key Mode), 4 – 3
Transactional Triggers property, 4 – 15
Translating Oracle Forms applications, B – 2
Translation Manager, B – 2
Triggers

database triggers, 2 – 14
failure in triggers, 1 – 3
handling runtime errors in triggers, 1 – 2
mouse triggers, 6 – 2
transactional triggers, 4 – 8

U
UE_SAMP.MAK, 3 – 18
UE_XTB.C, 3 – 18
UE_XTBN.C, 3 – 18
UE_XTBN.MAK, 3 – 18
UEZ.OBJ, 3 – 19
uifont.ali file, 9 – 9
User Exit Interface

creating a user exit interface, 3 – 12
integrating, 3 – 13
MS Windows SDK Functions, 3 – 16
non–Oracle user exits, 4 – 11
project files, 3 – 18

User–named routines, 2 – 2
User–named triggers, 1 – 7

Index – 6 Forms Advanced Techniques

V
VBX controls

about VBX controls, 11 – 2
creating VBX controls, 11 – 12
firing events, 11 – 8
getting properties, 11 – 9
invoking methods, 11 – 11
mapping to Oracle Forms properties, 11 – 5
responding to events, 11 – 7

runtime behavior of VBX controls, 11 – 6
setting properties, 11 – 10
VBX files, 11 – 2

W
When–Create–Record trigger, 4 – 36
White on Black, A – 18
Widget mnemonics, 9 – 12

Reader’s Comment Form

Name of Document: Forms � Advanced Techniques
Part No. A32506–2

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Forms Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.
Fax: (415) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

����������
����������

A32506–2

������ ���	�
�� ��

������

����	�� ���

