ORACLE

Integrating Oracle9/AS Reports
Services in Oracle97AS Forms
Services

An Oracle Whitepaper
Covers

- Oracle9i Forms and Oracle9i Reports in Oracle9iAS
Release 2 and Oracle9iDS' Release 2
- Oracle9iAS Forms and Reports Single Sign-On

December 2002

Integrating Oracle9/AS Reports Services in Oracle97AS
Forms Services

INtrOdUCHON ... e 4
Audience addressed in this Paper ... 4
Checklist to run integrated Reports in Oracle9/AS Forms Services......5
Oracled7 FOIMS ..ot 5
Understanding Oracle97 Forms Developer ..o, 6
Understanding Oracle97AS Forms Services ..., 6
The formsweb.cfg configuration fileccoovviiiiiiiiiiiiiiiiiiccns 6
The default.env environment filecooeiioiriiniiii 7
The Forms Servlet ..o 8
The Forms Listener Setvlet.......coooiiiiniiiiiiccccece 8
OC4] and Mod_OCH] ..o 9
Oracle97AS Forms Services configuration in Oracle9/DS 9
Oracle97AS Forms Services configuration in Oracle97AS....................... 9
Oracled7 REPOLLS ..ocvviiiciiicicieicc e 9
Understanding Oracle97 Reports Developer ..o, 9
Reports with paper Jayout ..o 10
Reports with Web Jayout........cooeviiiiiiiiccccce 10
Understanding Oracle9ZAS Reports Services......oommirnunieiiccueiniecnnnnn 10
The Reports Servlet.....oooiiiiiicccccccce 11
The Reports CGl....iiiiii e 11
The Reports SErVer... ..ot 11
The rwservlet.properties configuration file.........coooeviiiiiininiicnnnn. 12
The <Reports Server>.conf configuration fileccocoovrnnnnn. 12
The cgicmd.dat fileccoviviiiiiiiiiiiie 12
Oracle9:AS Reports Services configuration in Oracle9/DS................. 13
Oracle9:AS Reports Services configuration in Oracle9ZAS 13
Single Sign-On Integration (available with Oracle9ZAS)..........cccccvvvueees 13
FaaTeTe NN 0 111 0 JUTUTRRUU TSRO 14
Single Sign-On in FOIMS ..o 14
Enabling single sigh-on in FOrms.......cccoecviiiiiiiiiiiiiicicines 15
Single Sign-On 10 REPOLLS woevvviieiiiiiiciiiccccc e 16
Enabling single sigh-on in RePOrtscccoevvieiiicneiiiiceccieaes 18
Enabling access control for Reports Servicescoovvevrueiricrnneinnes 18
Disabling single sigh-on in REPOLLS ...ovvevevieruiiicieiiiiccieecciaes 18
Disabling Oracle Reports access control ..., 18

How does single sign-on relate to Reports integrated in Forms? 19

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 2

Forms / Reports integration single sign-on MattiX........ccceeererrririenenes 19

Calling Oracle Reports from Forms On the Web ..o 20
Introducing the RUN_REPORT_OBJECT built-ift.....cccceeviniurinunnes 20
Using parameterlists in RUN_REPORT_OBJECTcccccceuevuees 22
Using the RUN_REPORT_OBJECT built-iftccccvuiiviiiniiiciciciane. 23
RUN_REPORT_OBJECT example.......cccccvucuriciniciniciiicinicincaen. 23
Passing Forms parameter lists in RUN_REPRORT_OBJECT......26
Calling Reports that display a parameter form........ccoovevviiiiicnicnns 26
Using the WEB.SHOW_DOCUMENT built-ifi.....ccccocuvieiriciricinnann. 31
SYNEAX ottt s 31
Example - WEB.SHOW_DOCUMENT () ..c.ccooviviiiiiiiiciciinne. 32
Example - WEB.SHOW_DOCUMENT() & relative addressing ..33
Example - Obfuscating the user credentials in the URL.................. 33
Example — Reports SSO and WEB.SHOW_DOCUMENT))........ 35
Printing Reports output on the Web......oooiiiiiiii, 36
Forms Migration Assistant (FIMA) ..o 36
Known issue with rp2rro.pll and workaround.........cccocvvviiiciininnnnnn. 37
SUMMIALY vt 38
Appendix: Usability MatriXcccooveiiiiiiiniiiiccesccessccescenes 39
Appendix B: Passing Forms parameter lists........coccovvviiiiiiincinincnnen 39
Forms Parameter list €Xamplecoooevvvriricinininiccceccs 40
Appendix C: TroubleshOoting..........ccccovviuiiiiiiiiniiiiiicccces 41

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 3

Another version of this paper, covering the
integration of Oracle Reports6i in Oracle Forms
Services 6i, is available at
otn.oracle.com/products/forms

Integrating Oracle9/AS Reports in Oracle9ZAS
Forms Services

INTRODUCTION

Oracle9: Application Server Release 2 (Oracle97AS) and Oracle9; Developer Suite
Release 2 (Oracle9/DS) contain Oracle97 Forms and Oracle97 Reports. Starting
with this release of both products, thete is no longer a client/setver runtime
environment available, which means that Forms and Reports applications must be
run on the Web.

This paper focuses on the integration of Oracle9: Reports in Oracle9/AS Forms
Services and discusses in great detail how to call Oracle97 Reports integrated in
Oracle9/ Forms applications. Throughout this paper Oracle97 Application Server
Release 2 is referred to as Oracle9/AS, while Oracle97 Developer Suite Release 2 is
referred to as Oracle9/DS. If the release number of Oracle Forms and Oracle
Reports is not explicitly mentioned, then implicitly the Oracle9 Forms and
Oracle97 Reports version is meant. After reading this whitepaper you will

* Know about the configuration files involved and how to work with them

* Know how to use the Forms RUN_REPORT_OBJECT() built-in,
replacing RUN_PRODUCTY() for calling integrated Oracle Reports

* Know how to use the WEB.SHOW_DOCUMENTY() built-in to
download the Reports output from the middle tier

* Understand Single Sign-On for Oracle9/AS Reports Services and
Oracle9/AS Forms Services

* Know about existing problems and how to work around them

Audience addressed in this paper

The audiences addressed in this paper are customers and technical consultants who
know the Forms Repotts integration in client/setver environments and that plan
to move their applications to the Web using Oracle97 Forms and Oracle97 Reports
in Oracle9/AS Release 2 and Oracle9/DS Release 2.

Customers who already run their Forms applications on the Web will learn about
the differences between running integrated Reports in Forms67 and running them
in Oracle9: Forms. Also covered is the format change of the Oracle9: Reports

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 4

‘getjobid’ parameter ensuring that existing Forms6: Web applications with
integrated calls to Oracle Reports continue working in Oracle9/AS and
Oracle9/DS.

Checklist to run integrated Reports in Oracle9/AS Forms Services

The following list should give you some idea of what needs be done to successfully
run integrated Oracle Reports from Forms on the Web:

* Oracle9AS Forms does not run in single sign-on mode by default, while
Oracle9/AS Reports does. You will need to configure one of them to its

opposite.

* Oracle97AS Forms Services can not run Oracle9iAS Reports that are

access controlled.

* RUN_PRODUCT() is no longer supported in Forms to perform calls to
integrated Oracle Reports. Use RUN_REPORT_OBJECTY() instead.

* The Oracle9/AS Reports Services ‘getjobid’ parameter, no longer contains
the Reports Server name in its value, nor does it allow an equal sign as a

delimiter between the parameter name and the value.

* The Reports destypes ‘screen’ and ‘preview’ no longer exist. Previewing a
Reportts output before printing must be done on the Web using
destype=cache and desformat=htmlcss or desformat=pdf

* There is no local printer support!. Oracle97AS Reports Services prints to
network printers only, which is common now on the Web.

* Record groups can no longer be passed to Oracle Reports as data
parameters in a parameter list. Use a query in the Reports definition file
instead.

* Calling a report with its own parameter form displayed does not work
out-of-the-box. A workaround for calling such reports is provided in this
paper.

All of this is covered in the following sections contained in this paper.

ORACLE9Y/ FORMS

Oracle9: Forms consists of two components: the Oracle97 Forms Developer
building component and the Oracle97AS Forms Services Web deployment
component. Oracle9/AS Forms Services is a part of the Oracle9/ Application
Server Release 2 offering, while Oracle9; Forms Developer is part of Oracle9/DS.

Coming from the client/server paradigm, most Forms applications use one of the
following two built-ins to create a report using the Reports client runtime engine:

1 You can still download the report output to the client Browser and use the Browser’s
printing facilities.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 5

For an in-depth view of the Forms Services
architecture, refer to the whitepaper
Oracle9iForms Services Overview at
otn.oracle.com/products/forms

* RUN_PRODUCT built-in

* RUN_REPORT_OBJECT built-in
With Oracle9/ Forms and Oracle97 Reports, the client runtime engine no longer
exists, and so all integrated calls from Forms in the Web to Oracle Reports must

use Reports Services?. There are two Oracle97 Forms built-ins supported for
running Reports on the Web:

e RUN_REPORT_OBJECT built-in
e WEB.SHOW_DOCUMENT built-in

Both of these built-ins, and how to use them when calling integrated Oracle
Reports in Forms, are explained later in this whitepaper.

Understanding Oracle9i Forms Developer

Oracle9/ Forms Developer is the name of the Forms application building
environment that is shipped with the Oracle9: Developer Suite.

Understanding Oracle9/AS Forms Services

Oracle9iAS Forms Services is available in Oracle9ZAS for production deployments
and in Oracle9/DS for testing. The Forms Services components and configuration
files provided in Oracle9/DS are the same as those in Oracle97AS, so that an
application developed in Forms Developer works the same in the production

environment as in the test environment.

The following main components and configuration files are used when running
Forms on the Web

¢ 'The formsweb.cfg configuration file
* The default.env environment file

* The Forms Servlet

* The Forms Listener Setvlet

* Oracle Containers for J2EE (OC4J)

The formsweb.cfg configuration file

The formsweb.cfg configuration file, located in the forms90\setver ditectory of
every Oracle9/DS or Oracle9ZAS installation, is read by the Forms Servlet to build
the Forms Applet start HIML page. Information in this configuration file is

separated into three categories:

2 The exception from this rule is for applications that use the Reports background
engine for printing only. The Reports background engine is accessible directly from
Forms on the server by configuring the Reports_Path variable in the Forms default.env
file. Oracle recommends to use Oracle97AS Reports Services for integrated reporting in
Forms.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 6

Unlike in client-server configurations, the
Reports_Path environment variable does not
need to be specified for the Forms Services
environment.

* System parameters — System parameters are parameters that cannot be
specified within the actual application URL. These parameters determine
the Applet HTML template file, the default working directory, and the
environment file used, unless these files are otherwise specified later in the

same configuration file.

* User parameters — User parameters are default parameter settings, like
‘formy’, ‘userid’, Applet ‘width’ and Applet ‘height’, which can be
overwritten in the application URL or later in the same configuration file.
If a parameter is not mentioned in the request URL for an application, its
value is instead taken from the default settings.

* Custom application definition — A named configuration that is a logical
group of system and user parameters used for one particular application.
The name of the configuration appears in the request URL as the value of
the config parameter (config=<named configuration>). Parameters that
are not included in a named configuration or specified in the URL are
taken from the default settings.

[reptest]
form=reptest90
userid=scott/tiger@orcl
look&feel=oracle

width=700

height=500

Example 1: Custom application definition in formsweb.cfg
You can call the application ‘reptest’ from the Web by issuing
http://<hostname>:<port>/forms90/f90ervletrconfig=reptest

If an extra parameter needs to be passed in then it can be added to the named
configuration or appended to the URL

http://<hostname>:<port>/forms90/f90ervletrconfig=reptest&

separateFrame=true

For Forms/Reportts integration, you can also use the “otherparams” parametet in
the formsweb.cfg file to pass extra information (such as the name of the Reports
Server to use) when starting the Forms Web application.

The default.env environment file

The default environment file is specified with the ‘envlile’ parameter in the
systems parameters section of the formsweb.cfg file. The ‘default.env’ file
determines the environment setting, like Forms90_Path, in which a Forms runtime
engine is started. Overwriting the ‘envFile’ parameter in the named configuration

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 7

section of an application allows you to start different applications with different

environment settings:

[reptest]

form=reptest90

envFile=myRep.env

Example 2: Referencing a custom environment file in formsweb.cfg

For Oracle9/ Forms/Oracle9/ Reports integration, you do not need to specify the
Reports_Path for an application as long as the Forms Services can access the
Reports Server, which is the default configuration for applications installed with
Oracle9:DS or Oracle97AS.

The Forms Servlet

The Forms Servlet, which acts as the Forms Services Web Interface, is by default
accessible through http://<hostname>:<port>/forms90/f90servlet.

When calling the Forms Servlet URL to start a Forms application on the Web,
you’ll need to pass either a custom configuration section specified in the
formsweb.cfg file or the complete list of Forms runtime parameters.

The following URLs are all valid:
http://<hostname>:<port>/forms90/f90setvletrconfig=reptest
http://<hostname>:<port>/forms90/f90servletrconfig=reptest&form=reptest

http://<hostname>:<port>/forms90/{90servletrform=reptest&userid=scott/ tige
r@orcl&lookandfeel=oracle

The Forms Servlet uses the formsweb.cfg file to generate the application start
HTML file, which, in turn, initializes the download of the Forms Java Applet to
the client. After this, the Forms Servlet is released to serve other application
requests. The Forms Web runtime process is started in the environment specified
by the ‘default.env’ file if not overwritten in the custom application section.

The Forms Listener Servlet

The Forms Listener Servlet dispatches the communication between the Forms
client and the Forms user runtime process on the server. The Forms Listener
Servlet is defined in the formsweb.cfs file by the serverURL parameter. The default
value is “/forms90/190servlet”.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 8

For more information about Oracle9iDS, refer to
the Oracle9/DS Release 2 data sheet on
otn.oracle.com

For more information about Oracle9iAS, refer to
the Oracle9/AS Release 2 data sheet on
otn.oracle.com

Refer to the Oracle Reports New Features
whitepaper at otn.oracle.com/products/reports for
more information on Oracle9i Reports.

0C4J and Mod_0C4J

Oracle Containers for J2EE (OC4]), the default servlet container in Oracle9/AS
and Oracle9/DS, is the runtime environment for the Forms Servlet and the Forms

Listener Servlet component.

Mod_OC4] is an Oracle Apache module in Oracle9/AS that routs HT'TP Servlet
requests to the OC4]J engine when running Forms Services on Oracle97AS.

Oracle9/AS Forms Services configuration in Oracle9/DS

To conserve disk space, Oracle9/DS does not contain the Oracle HT'TP Listener
and its components, but instead uses the integrated HI'TP listener in OC4]J to
runtime-test Forms and Reports Web applications. All Web communication is
handled by the OC4]J-integrated HI'TP Server. The configuration of the Forms
runtime environment is the same as in Oracle97 Application Server, except that
neither mod_oc4 nor the single sign-on feature is available in Oacle9/DS.

The Forms Web runtime environment is automatically configured when
Oracle9:DS is installed. No additional, manual configurations are required to call
Reports from Forms applications.

Oracle9iAS Forms Services configuration in Oracle9/AS

The Forms Servlet and the Forms Listener Servlet running in OC4J are accessed
through mod_oc4j, an Oracle Apache module, when your application is running in
Oracle9/AS. Mod_oc4 routes all calls to /forms90/f90servlet and /forms90/
190servlet to OC4J, while downloads of images and Java archive files used within a
Forms application are handled by the Oracle HT'TP Server.

All required configurations are automatically performed when Oracle97 Application
Server is installed. As with Oracle9/DS, there is no need for additional, manual
configurations to call Reports from Forms applications.

ORACLE9Y/ REPORTS

Like Forms, Oracle97 Reports is the brand name for two separate components: the
Oracle97 Reports Developer building environment and the Oracle9/AS Reports
Services deployment environment. Throughout this paper, the terms Reports
Services and Reports Server are used interchangeably for the same component.
Oracle9: Reports Developer is part of the Oracle9/DS offering and is available on
the same platforms as is Oracle9/DS.

Oracle9ZAS Reports Services, the Reports Server component, is included in
Oracle97 Application Server Release 2.

Understanding Oracle9i Reports Developer

Oracle9: Reports Developer, the building environment for new and existing
Reportts application modules, contains numerous new features like the added
support for Web layouts. Web layouts allow a Reports application developer to

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 9

More information about Web layouts in Oracle
Reports is provided in the tutorial Getting started
with Oracle9i Reports, accessible from the
Reports9i link on otn.oracle.com/products/reports

include Reports content into any existing JSP page or to define the complete
Reports definition in a stand-alone JSP file, rather than using the rdf file format.

Existing Reports, built with previous versions of Oracle Reports, use the paper
layout, the most common layout type for Reports integrated in Forms applications.

Oracle9/ Reports Developer has a built-in preview functionality for Reports paper
and Web layouts.

Reports with paper layout

The Reports paper layout is the name for the “old” report layout; that is, the only

layout available in Reports releases prior to Oracle9; Reports. The dimension of a

Reports in paper layout is defined by the size of the paper used to print the report
content. Although previous Reports releases supported the display of both HIML
and HTMLCSS output in a Web browser, the dimension used was always the size

of a sheet of paper.

Reports with Web layout

Before Oracle97 Reports, it was not possible to transfer the output from Reports
into an existing Web page, or to create a Reports Web output with a width wider
than the margin of a sheet of paper. The new Web layout allows a Reports
designer to freely design the page size of the report, with no constraints enforced.
Web layouts are defined in Java Server Pages (JSP) files, which can be created
either within Reports Developer, without any manual JSP coding, or within
Oracle9/ JDeveloper, which contains the Oracle97 Reports tag library.

Reports Web layouts cannot be called from Forms with the Run_Report_ Object
built-in. If you need to call a Reports Web layout from Forms, use the Forms
WEB.SHOW_DOCUMENTY() built-in with a URL pointing to the jsp page
holding the Reports definition.

Understanding Oracle9iAS Reports Services

Oracle Reports Services, the Web deployment environment for Oracle Reports
modules, is part of Oracle97 Application Server Release 2. Oracle97AS Reports
Services 1s also referred to as a Reports Server. Both names are used interchangeably
throughout this paper. The following main components and configuration files are
used when running Reports on the Web:

* The Reports Servlet (rwservlet for paper layouts)
* The Reports CGI (for backward compatibility)
* The Reports Server process

* Rwservlet.properties configuration file

* <Reports Server>.conf configuration file

* 'The cgicmd.dat file

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 10

To access a Reports Services from the Forms
RUN_REPORT_OBJECT() built-in, you should not
have an underscore in the Reports Server name

The Reports Serviet

The default Oracle9ZAS Reports Services Web interface is a servlet, rwservlet, which
dispatches incoming Reports HT'TP requests to the Reports Server engine and
performs single sign-on authentication where required.

Integrated calls to Oracle Reports in Forms use the servlet either to request a
report or to download the resulting Reports output to the Forms client browser.

The Reports CGI

The Oracle9: Reports Common Gateway Interface (CGI) performs the same tasks
as the Reports Servlet, but is provided for backward compatibility only. If you have
an existing Forms Web application with integrated calls to the Oracle Reports
Server that uses the CGI interface, then be aware that the CGI will go away in
future releases with further notice.

Oracle recommends using the Reports Servlet. If your business requires single
sign-on, the Reports Servlet is mandatory.

The Reports Server

The Reports Server process is a management instance for multiple Reports runtime
engines. There are two types of Reports servers available with Oracle97 Reports:
the Reports ‘in process’ server and the Reports server running in an extra process.

The Reports ‘in process™ server is started through the Reports Servlet rwservlet the
first time a report is requested. The ‘in process’ server is used whenever a Reports

Server name is not provided within the server parameter of the request.

The Reports ‘in process’ server can be started and accessed only through the
Reportts Servlet rwservlet, and it runs in the same process as the servlet. The name of
the ‘in process’ server 1s rep_<hostname>, and, once started, its configuration

filename and location is repotts/conf/rep_<hostname>.

The second type of Reports Server runs in its own process, similar to the Reports
Server process in Reports6:. The Reports Server can be started by the following
command, accessible from the \bin directory of the Oracle9/DS or Oracle9/AS
installation.

rwserver —install <server_name> (Windows)

or

rwserver.sh server=<server_name> batch=yes & (Unix)

3 The Reports ‘in process’ server cannot be used with RUN_REPORT_OBJECT() in
Forms, but can be used instead with the WEB.SHOW_DOCUMENT() built-in.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 11

The complete list of parameters to be used with
the cgicmd.dat file is contained in the file itself.
Open the file with a text editor to read this
information.

Any value can be used for <server_name>, as long as the name selected is unique
in the accessible network. To work with RUN_REPORT_OBJECT() in Forms,
the Reports Server name shoxld not contain underscores. Throughout this paper,
Repsrv# is used for this value.As with the in process server, the Reports
configurable file for the Reports Server started as an external process. This
configurable file resides in the reports/conf directory, with the name
<server_name>.conf. It is created when you first start the Reports Server.

The rwservlet.properties configuration file

The rwservlet.properties file is the Reports servlet configuration file located in the
repotts\conf directory The setvlet properties file contains configuration settings,
settings such as those for single sign-on, those for cookie expiry time, and those
that determine whether or not an in process server should be started when a server
parameter is not contained in the requested URL.

For Forms/Reportts integration, you will need to modify the setvlet properties file
only to disable single sign-on, which is switched on by default.

The <Reports Server>.conf configuration file

The <Reports Server>.conf configuration file is created the first time a Reports
Server is started. The <Reports Server>.conf file is an XML file that contains all
the information that was stored in the <Reports Server>.ora file in Reports6s, for
example, the cache size, the cache directory, the minimum number of Reports
runtime engines engines used, the maximum number of Reports runtime engines

used, the job notification settings, and so on.

The cgicmd.dat file

The cgicmd.dat file, located in the reports\conf directoty, can be used to shorten
the Reports request URL whenever you are either running Reports from the Web
or using the Forms WEB.SHOW_DOCUMENT() built-in. The cgicmd.dat file
can be used to define keyname/value paits, where the value defines a number of
Reports command-line arguments to be used with one or with many Reports files,
each mapped to a named identifier. The following entry in a cgicmd.dat file defines
the keyname ‘reptest’ for the userid, destype, and desformat command-line
arguments. The “%*” indicates that all additional parameters specified in the URL
should be added to this command line.

reptest: userid=scott/tiger@orcl destype=cache desformat=htmlcss %o*

To run a report using the WEB.SHOW_DOCUMENT() built-in in Forms, use
this keyname entry:

* Repsrv is not a unique name, but can be made unique by adding the hostname to it
like in ‘RepsrvEFnimphiu-lap’. Note that there is no price for the shortest Reports Server
name.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 12

Web.show_document (‘/reports/rwservlet?reptest&server=Repsrv¶mform=

no&module=reptest.rdf’,’_blank’);

Example 3: Referencing cgicmd.dat keys in Forms calls to WEB.SHOW _
DOCUMENT/()

Oracle9/iAS Reports Services configuration in Oracle9/DS

Oracle9: Reports 1s configured to use the OC4J integrated HI'TP Server to run
Reports modules on the Web. This is the default configuration when you install
Oracle9/DS. This configuration can also be used to test Reports integration in

Forms.

The Reports configuration files explained in this paper are located in the
Oracle9/DS installation directoty under the reports/conf node.

The Oracle9:/DS install does not include the Oracle Single Sign-On Server and
Oracle9/AS Portal, which means that you cannot run and test single sign-on
integration and Reports access control, provided by Oracle Portal.

To test Forms and Reports integration in a single sign-on environment, you need
to have Oracle97AS installed.

Oracle9/AS Reports Services configuration in Oracle9/AS

When installed with Oracle97AS, Reports Services uses mod_OC4] and the Oracle
HTTP Server to process Web requests. The Reports servlet uses OC4J as its

runtime environment.

The Reports software installs into the <Oracle97AS_Home>\bin directory and the
<Oracle97AS_Home>\repotts directoty. The Reports Server configuration files
are located in the <Oracle97AS_Home>\reports\conf directory.

Reports Services is single sign-on enabled using mod_osso, an Apache module
which is a partner application to the Oracle Single Sign-On Server. Existing Oracle
Reports modules can be run in single sign-on mode without any changes to the

code being necessary

SINGLE SIGN-ON INTEGRATION (AVAILABLE WITH ORACLE9/AS)

In the client-server environment, single sign-on support did not apply, and as such
Forms and Reports integration did not cover this subject.

Single sign-on is now an integral part of the Oracle97AS Release 2 offering, and so
it can now be used with both Oracle9/AS Forms Services and Oracle9/AS Reports
Services, making it an interesting feature to cover for the Forms and Reports
integration. Previous versions of Forms and Reports that may have been integrated
with the single sign-on capability of Oracle97AS 1.0.2.x can now be more fully and
smoothly integrated.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 13

Oracle9/AS Forms Services and Reports Services are single sign-on enabled
through the Oracle9ZAS Single Sign-On Server (SSO Server) and the Oracle
Internet Directory (OID) for authentication and authorization.

It 1s important to note that any existing Forms and Reports application can
participate in single sign-on with no changes required to the application code.
Rather than directly partnering with the Oracle97AS Single Sign-On Server, the
decision to use mod_osso instead was made for backward compatibility.

mod_osso

The HT'TP module mod_osso simplifies the authentication process by serving as
the sole partner application to the Single Sign-On server, rendering authentication
transparent for Oracle91AS applications in Release2. Oracle91AS Forms Services
and Oracle9iAS Reports Services use mod_osso to register as a partner application
to the Oracle Single Sign-On Server

Single Sign-On in Forms

Even when Forms is run in single sign-on mode, the connection to the database is
still established with SQL*Net, which requires a physical database account
username and password. To support single sign-on, the Forms Servlet is now
enabled to look up the user’s database account information in the Oracle Internet
Directory (OID). Single sign-on in Forms is secure, as there aren’t any user
credentials sent over the wire to the Forms client All such exchanges are handled
on the middle-tier server.

_Oracle 9/AS V2

1
username
| | - Forms Servi
passwiord
| |
3 15
Oracle97 Single Oracle9i Internet
SignOn Server Directory

Figure 1: Forms Services Single Sign-On architecture

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 14

Single sign-on in Forms proceeds as follows:

1.

A user requests a Forms Services application running in single sign-on
mode.

Single sign-on mode is activated by registration of the Forms Services
URL root “forms90/{90servlet” with mod_osso.? Mod_osso checks to
see whether the user is authenticated for this URL, and if not, redirects
the request to the Oracle97AS Single Sign-On Server. If it cannot find a
valid authentication cookie within the user request, the Single Sign-On
server displays a logon dialog for the user to provide the credentials of
his/her lightweight user account

Oracle97AS Single Sign-On Server authenticates the user against the OID.
Mod_osso redirects the request to the Forms Servlet, which receives the
user single sign-on credentials and then retrieves the physical database
user account for the requested application from the Oracle Internet
Directory.

To obtain the user credentials from the OID, the Forms Servlet looks for
the unique key built from the authenticated username and the Forms
application name, as it was passed in the “config” parameter of the Forms
URL.

From this point on, Forms executes as if started in non-sso mode.

Enabling single sign-on in Forms

Oracle9ZAS Forms Services is installed with single sign-on disabled.

To enable single sign-on in Forms, edit the forms90.conf file in the
forms90/setver directory. Search for the following entriesé and remove the

comments (‘#’) from each.

#<| f Modul e npd_osso. c>
#<Location /fornms90/f90servl et >
#require valid-user

#Aut hType Basic

#</ Locat i on>

#</ | f Modul e>

After the mod_osso definition in the forms90.conf file has been uncommented,

the single sign-on definition should look like this:

> Single sign-on for Forms is configured in the forms90/server/forms90.conf
configuration file.

¢ In Oracle97AS 9.0.2 these entries are written into one line. To work with single sign-on

these need to be in separate lines like shown in this Whitepaper

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 15

Oracle9iAS Reports Services security is a
complex subject, covered only briefly in this
paper. For more information on Reports security,
refer to the whitepaper Securing Oracle9i Reports,

available at otn.oracle.com.

<| f Modul e nod_osso. c>
<Location /forms90/f90servl et >
require valid-user
Aut hType Basi c
</ Locati on>
</ | f Modul e>

Restart the Oracle9/AS HT'TP Server to enable these changes. The next time that
you request a Forms Web application, you will be prompted for your single sign-on

username and password’.

Single Sign-On in Reports

As in Oracle Forms, the connection to the Reports database connect is established
with SQL*Net and a physical database account username and password. Like
Forms, Oracle97AS Reports Services leverages mod_osso for authentication.

The following steps are involved when a user requets a report from a single sign-

on protected RCpOftS Server.

Single sign-on in Reports proceeds as follows:

1. A user requests a report from Reports Services with a call to the Reports
servlet (http://.../tepotts/rwsetvlet?..).

For single sign-on to be activated, the SINGLESIGNON parameter in
the rwservlet.properties file must be cither set to “Yes’” or commented out.

By default Oracle9/AS Reports Services is configured with single sign-on
enabled. The request is passed from the Reports servlet to mod_osso,
which checks with the Oracle9ZAS Single Sign-On Server to see whether
the user has been authenticated for the Reports URL. If the user has not
been previously authenticated, the Single Sign-on Server displays a logon
screen for the user to provide his or her single sign-on username and

password.

2. The Oracle9AS Single Sign-On Server uses OID to verify that the

provided user credentials are valid.

3. The request is then directed back to mod_osso, which passes the request,
in turn, back to the Reports Servlet (rwservlet). Within the Reports URL

7 Refer to the Forms Services documentation for directions on setting up Forms
Services to serve public requests and single sign-on requests at the same time.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 16

the ssoconn® parameter is used to specify one to many resource(s), each
of which is a named identifier in the OID that holds the connection
information for a Reports data source. There is no longer any need to pass
credential user connect information over the Web using plain text.

4. The Reports Server cither uses the same process that the Reports Services
servlet runs in, making it an in process server?, or runs as an extra process,
which is the model also available with Reports 67 The Reports servlet calls
the Reports Server, passing the runtime arguments for the report to

execute.

Not shown in Figure 2 is the ability of Reports to verify a user’s
authorization to run a report. The source of authorization is configured by
the <security></security> tag pair in the <Reports Server name>.conf
file. By default, access control is configured to be performed by
Oracle9/AS Portal, but it can also use the custom authotization
mechanism.

Oracle 9/AS V2

Report Runtime Engine

5

Reports Server

powered by Apache

o
@
username o External
| | In process process
(=]
password = rwserviet ‘

Oracle97 Single Oracle97 Internet
SignOn Server Directory

Figure 2: Reports Services Single Sign-On architecture

8 SSOCONN can be used when you are calling Oracle Reports using the Forms
WEB.SHOW_DOCUMENT() built-in, but not when you are using
RUN_REPORT_OBJECT)).

9 While it is possible to use the in process server with a Reports request initiated from
the Forms web.show_document() built-in, you cannot use the in process server with the
RUN_REPORT_OBJECT() built-in. The reason for this is that the in process server is
implicitly started by the first request to “rwservlet”, which isn’t used with the
RUN_REPORT_OBJECT() built-in.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 17

Enabling single sign-on in Reports

Oracle9ZAS Reports Services 1s installed with single sign-on enabled.

Enabling access control for Reports Services

Like single sign-on, access control is enabled by default after Oracle9ZAS is
installed.

Disabling single sign-on in Reports
To disable the Reports Server single sign-on, you need to edit the following
configuration files:

* repotts/conf/rwservlet.propetties
* reports/conf/<Repotts server name>.conf

In the rwservlet.properties file, search for the SINGLESIGNON parameter,

uncomment it, and set the value to No
#SINGLESIGNON=YES
Change this entry to:

SINGLESIGNON=NO
Restart the Oracle HTTP Server(OHS) for the changes to take effect.1?

Disabling Oracle Reports access control

To deactivate access control performed by Oracle9/AS Portal, either remove the
“securityl d="rwSec"” attribute from the reports/conf/<Reports server
name>.conf file 1! or change the <job ../> tag value from

<job jobType="report" engi nel d="rwEng" securityld="rwSec"/>

to

<job jobType="report" engi nel d="rwEng" />

10 To restart the Oracle HT'TP Server in Oracle9/AS, stop the Oracle97AS Process
Manager (OPM), either by using the Service panel (in Windows) or by typing denzct! stop -
¢t 0hs -v —d on the command line (in Unix). Similarly, to start it up, use domctl start -ct obs
(in Unix).

11 Deleting the <security> </secutity> tag pait is quick and easy, but such deletion has
an effect on all <job> types defined in the conf file. This means that access control is
disabled for all reports run by this Reports Server. To regain access control, either
make a copy of the configuration file before deleting the security entries, so that you
can later restore the file, or delete the configuration file and retrieve a new one when
restarting the Reports Server.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 18

Restart Reports Services for the changes to take effect.

How does single sign-on relate to Reports integrated in Forms?

As described in this paper, you should perform Reports integration in Oracle
Forms on the Web with a server-side call to Oracle9/AS Reports Services, using
the RUN_REPORT_OBJECT() built-in in Forms.

When requesting a report from a single sign-on protected Forms Services, the
authenticated user’s single sign-on identity is implicitly passed to the Reports
Server with each call to RUN_REPORT_OBJECT() built-in. The single sign-on
identity is used to authenticate the user to the Reports Server for further
authorization checking, if required.

A Forms application running in non-sso mode can run a report on a single sign-on
secured Reports Server, but fails if the Reports Server requires authorization. Also
the enduser must provide his single sign-on credentials when retrieving the Reports
output on the Web.

Forms / Reports integration single sign-on matrix

What if Forms Services needs to run in single sign-on mode while Reports Services
does not? Or, what if Reports Services runs in access control mode while single

sign-on is disabled for both products

The following matrix shows all the possible combination for enabling single sign-
on and access control. Access control in this case is performed using the default
configuration with Oracle Portal. Also shown 1s whether a particular combination
works with Forms applications that have integrated calls to Oracle Reports.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 19

Oracle9iAS Forms/Reports SSO configuration matrix

single sign-on mode Forms built-in

Forms Reports The green checkmark indicates the built-in working

with the configuration settings on the left

SSO SSO Access RUN_REPORT _ WEB.SHOW _
Control OBJECT DOCUMENT

v v
No V12
No V13
\éé; . v 15
v v
v v

CALLING ORACLE REPORTS FROM FORMS ON THE WEB

Calling Oracle Reports from Forms on the Web works the same for applications
whether they’re running in Oracle9/DS or in Oracle9/AS. Everything said about
deployment with respect to Forms Reports integration applies to either
environment

Introducing the RUN_REPORT_OBJECT built-in

In Oracle97 Forms Developer, to use the RUN_REPORT_OBJECT built-in, you
will need to create a new Reports object under the “Reports” node in the Object
Navigator. Each Reports object has a logical name which is used within Forms to
call the report from PL/SQL. You can create a new Repotts object for each
physical Reports file. One Reports object can also be used with many physical
Reports files

12 A logon dialog is displayed requesting the system authentication for this report to run.
Reports registered with Oracle Portal can be run only by users granted access to it

13 The single sign-on logon screen is displayed if the user has not previously been
authenticated e.g through connecting to Oracle97AS Portal. If the report is access
controlled through registration with Portal, then only those users that have access
permissions with Portal are allowed to run the report.

14 Supporting RUN_REPORT_OBJECT() with Reports that are access controlled is a
planned feature in a future patch set of Forms9z All applications that run integrated
Reports in Forms on client-server do not use access control for Reports, so that there
shouldn’t exist any upgrade problems when upgrading to Forms9i or moving from
Forms client-server to the Web.

15 Tf the report is access controlled by registration with Oracle97AS Portal then only
users that have access permissions are allowed to run the report. In this case Forms
repotts an error when running the report.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 20

=) -Forrns

Ié:‘-%HEF-TEST

Triggers —

Alerts #i Property Palette

Aftached Libraries

Data Blocks EER| +x | 25| 9 Fir'u:l:l_
Carvases

E ditors Feport: MYREPORT

LOs —oroTroTar—

Object Groups @ Name MYREPORT
Parameters

Popup Menus

Frogram Uritz

Froperty Clazzés
Record Grobps

eloper Integration

‘Reportz lename rephest rdf
EMYREPORTY @ Execution Mode Batch
[ZIREPTEST e
= RPZRRO @ Communication Mode Synchronous

Wizual Attributes @ Data Source Data Block, <Mullx

Windows @ Cuey Mame

—Menus ¥
—PL/SEL Libraries =/ Reports
Object Libraries @ Report Destination Type Cache

& Built-in Packages

—[Database Objects = Report Destination Mame

HTHMLCSS
G Report Server repsry

@ Report Destination Format

@ Other Reparts Parameters

Figure 3: Forms Object Navigator with “Reports” node and Reports objects
“MYREPORT1”, “REPTEST” and “RP2RRO”. The physical Reports file
referenced by the “MYREPORT1” object is defined as “reptest.rdf’. The
Reports runtime settings below the “Repotts” headline in the property palette
can be overwritten duting runtime using the set_report_object_property() built-
in.

General use of RUN_REPORT_OBJECT

The following example runs a report using the RUN_REPORT_OBJECT built-in.
The report object node defined in Forms Developer is named “MyReport1”. A

The name of the Reports object appears in all
caps in the Forms Navigator, but it can be placed

in mixed case when called from PL/SQL. yser-defined Reports parameter “p_deptno” is passed by Forms using the value in

the “dept.deptno” field. The parameter form is suppressed.

report_id Report_Object;

ReportServerJob VARCHAR2(100);

BEGIN

report_id:= find_report_object("MyReport1’);

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 21

List of System Parameters in
RUN_REPORT_OBJECT

Note that having DESTYPE defined both in the
parameter list and in SET_REPORT_OBJECT
_PROPERTIES does not prevent the program

from compiling, but does prevent it from running.

SET_REPORT_OBJECT_PROPERTY (report_id, REPORT_COMM_MODE,SYNCHRONOUS);

SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_DESTYPE,CACHE);
SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_SERVER, Repsiv);

SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_OTHER,'p_deptno="[|:Dept.Deptnol|

' paramform=no");
ReportServerJob:=run_report_object(report_id);

END;

Example 4: General use of RUN_REPORT_OBJECT)()

The RUN_REPORT_OBJECT built-in is well documented in the Oracle Forms

Services reference manuals and online help.

Using parameterlists in RUN_REPORT_OBJECT
With the RUN_PRODUCT built-in, Reports system parameters and user-defined

parameters are passed in a parameter list. The same parameter lists can be used
with RUN_REPORT_OBJECT, with the exception of the system parameters,
which need to be set by SET_REPORT_OBJECT_PROPERTY() built-in. The
following is a list of Reports System parameters to be set when needed.

REPORT_EXECUTION_MODE BATCH or RUNTIME 16

REPORT_COMM_MODE SYNCHRONOUS
ASYNCHRONOUS

REPORT_DESTYPE FILE, PRINTER, MAIL, CACHEY

REPORT_FILENAME The report filename

REPORT _DESNAME The report destination name

REPORT_DESFORMAT The report destination format

REPORT _SERVER The Report Server name

If your existing parameter list already contains definitions for system parameters,
you may experience errors. To prevent problems from arising, modify the

16 Repott_Execution_Mode is a client/setver feature and no longer used in Forms9i.
Set the value to either BATCH or RUNTIME as it is a required field.

17 destype ‘file’ and ‘preview’ no longer is an option in Oracle97 Reports. If a report
needs to be previewed before getting printed then use destype cache with a desformat
of htmlcss. If a reports parameter form is required, then issue paramform=yes with the
command

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 22

parameter list itself, either by removing the entries for DESNAME and
DESTYPE, or by adding

delete_parameter(<parameter list>,'<name>');

to your code before using SET_REPORT_OBJECT_PROPERTIES().

Using the RUN_REPORT_OBJECT built-in"

The most secure approach for calling Reports from Forms on the Web is to use
the Reports Multi-tier Server in combination with RUN_REPORT_OBJECT.
Because the user’s database connection is implicitly passed from Forms to Reports
on the server, there is no risk of interception as there would be if it were passed in
the URL. To access a remote Reports Server using RUN_REPORT_OBJECT, the
Oracle9: Reports Server must be recognized by the Report Object in Forms. You
can do this dynamically, using the SET_REPORT_OBJECT_PROPERTY built-in
, or statically, by entering the Reports Server name string into the property palette
of the Report Object.

RUN_REPORT_OBJECT example

This example uses a synchronous call to RUN_REPORT_OBJECT to run a
Report. It expects the Report object name, the Reports Server name, and the
desired output format (PDF, HITML, HIMLCSS) to be passed as a parameter.

PROCEDURE RUN_REPORT_OBJECT_PROC (vc_reportoj Varchar2, vc_reportserver

varchar2, vc_runformat varchar2) IS

v_report_id Report_Object;

vc_ReportServerJob VARCHAR2(100); /* unique id for each Report request */
vC_rep_status VARCHAR2(100); /* status of the Report job */

vjob_id VARCHAR2(100); /* job_id as humber only string*
BEGIN

/* Get a handle to the Report Object itself. */

v_report_id:= FIND_REPORT_OBJECT(vc_reportoj);
SET_REPORT_OBJECT_PROPERTY(v_report_id, REPORT_COMM_MODE,
SYNCHRONOUS);

SET_REPORT_OBJECT_PROPERTY(v_report_id, REPORT_DESTYPE,CACHE);

18 Note that in Oracle9/DS 9.0.2 there is a known problem using RUN_REPORT_
OBJECT() with Forms running in debug mode. This problem is addressed and will get
fixed soon. If not running Forms in debug mode then all works fine.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 23

If upgrading applications from Forms/Reports
6i to Oracle9/AS release 2, you will need to
modify the Reports job_id, retrieved by the

RUN_REPORT_OBJECT() built-in, so that it
does not include the Reports Server name
when using web.show_documenty().

/* Define the report output format and the name of the Reports Server as well as a user-defined
parameter, passing the department number from Forms to the Report. There’s no need for a

parameter form to be displayed, so paramform is set to “no”. */

SET_REPORT_OBJECT_PROPERTY(v_report_id, REPORT_DESFORMAT,

vc_runformat);

SET_REPORT_OBJECT_PROPERTY(v_report_id,REPORT_SERVER,

vC_reportserver);

SET_REPORT_OBJECT_PROPERTY(v_report_id, REPORT_OTHER,
'p_deptno='||:dept.deptno||'paramform=no’);

vc_ReportServerJob:=RUN_REPORT_OBJECT (report_id);
vjob_id :=
substr(vc_ReportServerJob,length(reportserver)+2,length(vc_ReportServerJob)
);

/* If finished, check the report status . */
vc_rep_status := REPORT_OBJECT_STATUS(vc_ReportServerJob);

IF vc_rep_status="FINISHED' THEN

/* Call the Reports output to be displayed in a separate browser window. The URL for relative
addressing is valid only when the Reports Server resides on the same host as the Forms

Server. For accessing a remote Reports, you must use the prefix http://hostname:port/ */

WEB.SHOW_DOCUMENT (/reports/rwserviet/getjobid'®|| vjob_id

||'?server="vc_reportserver,'_blank’);

ELSE

message (‘Report failed with error message ‘||vc_rep_status);

19 The usage of getjobid has changed between Reports Server release 6/ and Oracle9i
Reports Server. In Reports Server 67 the getjobid parameter was used with an equal sign
between the parameter name and it’s value (e.g. getjobid=Repstv_32). In Oracle9/
Reports the equal sign is omitted and the parameter value directly succeeds the name
the parameter name (e.g. getjobid32). Also, the job id in getjobid no longer contains the
server name.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 24

END IF,;

END;

Example 5: Using RUN_REPORT_OBJECT for integrated calls to Oracle Reports

If you ate upgrading applications from Forms/Repotts 67 to Otacle97AS release 2,
when calling WEB.SHOW_DOCUMENT() you will need to modify the Reports
job_id, retrieved by the RUN_REPORT_OBJECT() built-in, so as not to include
the Reports Server name. To use the procedure described above, you would pass
the following information in a “When-Button-Pressed Trigger™
RUN_REPORT_OBJECT_PROC(<‘REPORT_OBJECT"><'/REPORT_SERVER_NAME'>",
<'FORMAT">)

Report_Object Forms Repott object name containing the r df
filename for the Report

Report_Server_Name Name of the Reports Server

Format Any of these formats:
html| htmlcss | pdf|xml| delimited | rtf

Forms applications calling a report synchronously make the user wait while the
report is processed on the server. For long-running Reports, it is best that you run
the report asynchronously, by setting the REPORT_COMM_MODE property to
asynchronous and the REPORT_EXECUTION_ MODE to batch:

SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_EXECUTION_MODE,BATCH);

SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_COMM_MODE,ASYNCHRONOUS);

After calling the RUN_REPORT_OBJECT built-in, you must create a timer to
run frequent checks on the current Report_Object_Status in a When-Timer-
Expired trigger . As a performance recommendation, the timer should not fire
more than four times a minute. After the report is generated, the “When-Timer-
Expired trigger” calls the WEB.SHOW_DOCUMENT built-in to load the Reports
output file, identified by its unique job_id, to the client’s browser.

The following describes the “When-Timer-Expired trigger” that checks for the
Report_Object_Status.

()

/* :global.vc_ReportServerJob needs to be global because the information about the Report
job_id is shared between the trigger code that starts the report and the trigger code (When-

Timer-Expired that checks the current Report status. */
vc_rep_status:= REPORT_OBJECT_STATUS(:global.vc_ReportServerJob);

IF vc_rep_status="FINISHED' THEN

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 25

See Appendix B for a coding example.

vjob_id := substr(:global.vc_ReportServerJob,length(reportserver)+2,length
(:global.vc_ReportServerJob));
WEB.SHOW_DOCUMENT ('/reports/rwservlet/getjobid’||: vjob_id
||'?server="vc_reportserver,'_blank’);

ELSIF vc_rep_status not in (RUNNING','OPENING_REPORT''ENQUEUED") THEN
message (vc_rep_status||' Report output aborted');

END IF;

Example 6: Performing aynchronous reporting using RUN_REPORT_OBJECT))

Note: Do not forget to delete the timer when it is no longer needed.

Passing Forms parameter lists in RUN_REPRORT_OBJECT

The same parameter lists used with RUN_PRODUCT in a client-server
environment can also be used with RUN_REPORT_OBJECT when you are
calling Reports Services to perform integrated reporting in Forms on the Web.
Note that system parameters must be set with the SET_REPORT_OBJECT
_PROPERTY built-in. The syntax for using parameter lists in
RUN_REPORT_OBJECT is as follows:

ReportServerfob:=run_report_object(report_id,paramlist_id);

where paramlist_id is the same id used with RUN_PRODUCT?.

Calling Reports that display a parameter form?'

When you use the RUN_REPORT_OBJECT built-in to create Reports output in
Forms, the Reports Server is called directly on the server-side, rather than from the
Web. The Reports Server is unaware of the Web access path to the machine that
hosts the Reports Server Web interface because this information is not passed with

the RUN_REPORT_OBJECT call.

When you use a server-side call to run a report that contains a parameter form, the
Reports parameter form in the Web is displayed but is not functional when the
user clicks the Submit button. The reason for this can be identified by analyzing
the parameter form HTML source code that is generated by Oracle Reports
Server:

20 Using RUN_PRODUCT to generate Reports output is not supported in Oracle9:
Forms. Forms module containing integrated calls to Reports using RUN_PRODUCT
built-in don’t compile.

2l There exist a known issue with parameter forms in Reports97 when running in single
sign-on mode. This problem has been fixed and is contained in a next patch of
Reports9z. Until then the code explained in this section does only work for non single
sign-on deployments.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 26

(...) <form method=post action=""> (...)

Note that the HIML form "action" tag contains an empty string. For the form to
propetly generate the final Reports output, a valid action entry is needed, for

example:
<form method=post action="http://<hostname>/reports /rwservlet?">
Similarly, the hidden_run_parameters string value, which is used to store parameter
values getting passed implicitly with each subsequent Reports call, also has an
empty value:

<input name="hidden_run_parameters" type=hidden value="">
A valid string for the hidden_run_parameters is as follows:

<input name="hidden_run_parameters" type=hidden value="report %3Dreptest

+destype%3Dcache+desformat%3Dhtmlicss+userid%3Dscott%2Ftiger%40fnimphiu+

server% 3DRepsrv'>

Once you identify the source of the problem, you can fix it within Forms
Developer and Reports Developer. Unfortunately, you cannot resolve this problem
without modifying the Reports module.

Solution

The solution to the above-mentioned issue includes some programming in both
Reports and Forms.

In Forms

To work propetly, the parameter form requires three pieces of information that
cannot be retrieved in Reports when the parameter is called by
RUN_REPORT_OBJECT from Forms:

* usetname/password@connect_string
* Reports Server name
* Web access path to the Reports Server used.

Consequently, in addition to all other Reports runtime parameters, this information
must be passed with the "othet" parameter in the RUN_REPORT_OBJECT
built-in.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 27

In this example, let’s use a procedure in Forms to call RUN_REPORT_OBJECT.
The procedure gets a value passed for the report_id, the Reports Server name, and
the output format: runformat.

Parameters Values

report_id Identifier of the Report Object
reportserver Name of the Reports Server to use
Runformat html, htmlcss, pdf, xml ...

Forms code example

PROCEDURE RUN_REPORT_OBJECT_PROC(report_id REPORT_OBJECT, reportserver

varchar2, runformat varchar2) 1S

ReportServerJob VARCHAR2(100);

rep_status VARCHAR2(100);
vjob_id VARCHAR2(100;)
vC_user_name VARCHAR2(100); /* used for creating parameter form */

vc_user_password VARCHAR2(100); /* used for creating parameter form */
vc_user_connect VARCHAR2(100); /* used for creating parameter form */

vc_connect VARCHAR2(300); /* used for creating parameter form */

BEGIN
/* get user connect string */
vc_user_name:=get_application_property(username);
vc_user_password:=get_application_property(password);
vC_user_connect:=get_application_property(connect_string);
[* creating complete connect string */

vc_connect:=vc_user_name||/’||vc_user_password||'@’

||vc_user_connect;
/*set Reports properties for run_report_object*/
SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_COMM_MODE

SYNCHRONOUS);

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 28

SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_DESTYPE,CACHE);
SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_DESFORMAT,
runformat);

SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_SERVER,

reportserver);

/* P_USER_CONNECT and P_SERVERNAME are custom parameters in the
Reports module */

P_ACTION is also a user-defined variable in Reports and takes the Web access
path to the Report (it doesn’t need to be hard-coded as in this sample) */
SET_REPORT_OBJECT_PROPERTY(report_id,REPORT_OTHER,'p_deptno=|
:Dept.Deptno||' paramform=yes P_USER_CONNECT='"||vc_connect||’
P_SERVERNAME='||reportserver||'P_ACTION=http://fnimphiu-lap’

||'.de.oracle.com:7779/reports/rwservlet?");
report_job_id:=run_report_object(report_id);
rep_status := report_object_status(ReportServerJob);
IF rep_status="FINISHED' then

vjob_id :=substr(ReportServerJob,length(reportserver)+2,length(ReportServerJob));
WEB.SHOW_DOCUMENT ('/reports/rwservlet/getjobid'||vjob_id||"?

server=Repsrv',' _blank');
ELSE
message (rep_status||' Report output aborted’);

END IF,;

END;

Example 7: Forms code to use Reports parameter forms with
RUN_REPORT_OBJECT

In Reports

In Reports, the following user-defined variables must be created:

P_ACTIONS Value for the empty “action” parameter

P_USER_CONNECT usetname/password@database used as hidden parameter

P_SERVER_NAME Reports Server Name

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 29

All user parameters are of type character. Don't
forget to clear the “Restrict list to predetermined
values” check box.

P_ACTIONS has an initial value of _action_.
Omitting this breaks the report when called directly
from a Web URL, accessing it via the rwservlet

Use the following code in a Report “before form” trigger to substitute the default
form values (as presented in the Reports module attributes) with your own string.

Reports code example

function BeforePForm return boolean is
vc_parameter_form varchar2(4000);
vc_hidden_runtime_values varchar2(1000);
vc_report_name varchar2(100);

begin

/* If Reports is called from the URL and not from Forms, then p_action is set to its

default value. In this case, the hidden_value has to retain the default value too */
If (:p_action="_action_’) then

vc_hidden_runtime_values:="_hidden_’;
else

/* The Report is started from Run_Report_Object and the hidden parameter has to be

set */
* 1. get the report module name */

srw.get_report_name(vc_report_name);22

[* 2. the name needs to be cut off blanks up to the length that it has in characters */
vc_report_name:=substr(vc_report_name,1,instr (vc_report_name,’ ’)-1);

/* Note that I'm not using any custom defined parameters except for

:p_action,:p_user_connect, :p_servername. If you have additional user-defined

parameters in your Report output, then this parameter needs to be added to the

"vc_hidden_runtime _values" string */

vc_hidden_runtime_values:="report="||vc_report_name||
‘&destype="||:destype||'&desformat="||:desformat||’
&userid="||:p_user_connect||'&server='||:p_servername;

end if;

22 The built-in SRW.GET_REPORT_NAME(...) doesn’t work properly in Reports
9.0.2. Until this problem is fixed, it is recommended to either hardcode the name of the
Reports source file or to pass it as a user parameter within the
set_report_obect_property (...,report_other,...) built-in in Forms

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 30

* build the parameter forms HTML code */

vc_parameter_form:='<htmI><body bgcolor="#ffffff"><form method=post

action=""|:P_ACTION]||"><input name="hidden_run_parameters" type=hidden
value=""||vc_hidden_runtime_values||"><center><p><table border=0 cellspacing=0
cellpadding=0><tr><td><input type=submit></td><td> width=15><td><input

type=reset></td></tr></table><p><hr><p>’;

/* set the modified before form value, to overwrite the default */
srw.set_before_form_html (srw.text_escape, vc_parameter_form);
return (TRUE);

end;

Example 8: Reports code to enable Reports parameter forms when called by
RUN_REPORT_OBJECT in Forms

The next time you run a Report with an integrated parameter form from
RUN_REPORT_OBJECT, the empty values in the HIML source will get
replaced. For example:

<form method=post
action="http://fnimphiu-lap.de.oracle.com:7779/teports/rwservlet?" >

and

<input name="hidden_run_parameters" type=hidden value="report=Reptest&destype=
Cache&desformat=HTMLCSS& userid=Scott/Tiger@fnimphiu&server=Repsrv">

You can copy the HTML template code for building the Report HTML form, as
used in the above example, from the Reports “before Form value” property.

Using the WEB.SHOW_DOCUMENT built-in

Use the WEB.SHOW_DOCUMENT built-in procedure to access any Web site
from a Forms application on the Web.

Syntax
The following table provides the syntax for WEB.SHOW_DOCUMENT and a

brief description of its assoclated arguments:

WEB. SHOW DOCUMENT(URL, DESTI NATI ON) ;

URL The URL is passed as a string (http://www.oracle.com), in a
variable, or as a combination of both. If the addressed Web
page is located on the same host as the Forms Server, a
relative addressing could be used
(/virtual_path/page. HTML).

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 31

DESTINATION Definition of the target where the addressed Web page
should be displayed. Values must be single-quoted.

_blank

Displays the Web page in a new browser window.

_parent

Displays the Web page in the parent frame of the current
page.
<target_name>

Displays the Web page in a frame specified by the

target_name.

A Reports Server is accessible on the Web through the Reports servlet,
rwservl et.

http://<hostname>:<port>/reports/rwserviet?server=<reportserver_tns>&report=<report>.rdf&de
sformat=[htmicss|pdf|xml|delimited|]&destype=cache&userid=<user/pw@database>¶mfor

m=[no|yes]

Example 9: Calling Reports from a Web URL

The following example calls this Report from Forms on the Web. It assumes that
the user parameter “p_deptno” is read from a Forms item “deptno” in the block
“dept.”

Example - WEB.SHOW_DOCUMENT ()

/* WHEN-BUTTON-PRESSED */
DECLARE

vc_url varchar2(100);

BEGIN
vc_url:="http://<hostname><port>/reports/rwservlet?server='

Il ‘Repsrv&report=reptest.rdf&desformat=htmicss&destype=cache ’

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 32

Il ‘&userid=user/pw@database&p_deptno="||:dept.deptno||'¶mform=no’;
WEB.SHOW_DOCUMENT (vc_url,’_blank’);

END;

Example 10: General use of WEB.SHOW_DOCUMENT()

Example - WEB.SHOW_DOCUMENT() & relative addressing

Use relative addressing if the Reports Server is installed on the same host as the

Forms Server.

/* WHEN-BUTTON-PRESSED */

DECLARE

vc_url varchar2(100);

BEGIN
vc_url:='/reports/rwserviet?server=Repsrv&report=reptest.rdf &desformat=htmlcss’
Il
‘&destype=cache&userid=user/pw@database&p_deptno='|| :dept.deptno
Il
‘¶mform=no’;
WEB.SHOW_DOCUMENT (vc_url,’_blank’);

END;

Example 11: Using relative Web addtesses with WEB.SHOW_DOCUMENT()

Example - Obfuscating the user credentials in the URL

To run Reports securely from Forms inthe Web Passing the user’s name and password to the URL in a human readable format

using the WEB.SHOW_DOCUMENT() built-in, it is when using WEB.SHOW_DOCUMENT() sometimes makes users feel
recommended to run Oracle9iAS Reports Services uncomfortable.

in single sign-on mode. Refer to the Reports
documentation for information on running Reports W hen you call Reports from Forms, you can use a hexadecimal obfuscation of the

in single sign-on mode. connect string in the URL that is passed by WEB.SHOW_DOCUMENTY(), so that
it is not readable on first sight.

This procedure expects the report output format [html, htmlcss, pdf, rtf, xml,
delimited] passed as ‘runformat’ and the name of the Reports definition file.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 33

PROCEDURE WEB_SHOW_DOCUMENT_PROC (runformat varchar2,reportname varchar2)
IS

vC_user_name VARCHAR2(30) :=get_application_property(username);
vC_user_pw VARCHAR2(30) :=get_application_property(password);
ve_url VARCHAR2(200);

vc_url_temp VARCHAR2(300);

v_a VARCHAR2(10);

v_b VARCHAR2(10);

i NUMBER(10);

vc_user_connect VARCHAR2(30):=get_application_property(connect_string);
BEGIN

/* Create the user's database connect string. */

vc_url :='userid="||vc_user_name||'/'||vc_user_pw||'@'||

VC_user_connect;

/* Convert the connect string into a hexadecimal character string. */

FOR i IN 1..LENGTH(vc_url) LOOP

v_a := Itrim(to_char(trunc(ascii(substr(vc_url,i,1))/16)));

ifv_a="'10'THEN v_a :="A’
elsifv_a="11'THEN v_a :="'BY
elsifv_a="12"THEN v_a :='C/
elsifv_a="13'THEN v_a :='D";
elsifv_a="14'THEN v_a :='E}
elsifv_a="15"THEN v_a :="F;

end if;

v_b := Itrim(to_char(mod(ascii(substr(vc_url,i,1)),16)));

ifv_b="10'THEN v_b :="A’;
elsifv_b="11'THEN v_b :='BY;
elsifv_b="12' THEN v_b :='C/;
elsif v_b ="13' THEN v_b :='D";
elsifv_b='14'THEN v_b :='E';

elsifv_b="15"THEN v_b :='F;

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 34

Please refer to the Forms and Reports
documentation on how to create resources and
assign them to a single sign-on user account.

end if;

vc_url_temp := vc_url_temp||'%’||v_al|v_b;
END LOOP;

[* Create the Reports URL. */

vc_url:="/reports/rwservlet?server=Repsrv+report="||[reporthame||'+destype=Cache+

desformat="||runformat||'+’ ||ve_url_temp ||'+p_deptno='||:dept.deptno;

* Call the Report in a new browser window using WEB.SHOW_DOCUMENT(). */
WEB.SHOW_DOCUMENT (vc_url, ’_blank’);

END;

Example 12: Hexadecimal URL obfuscation used with WEB.SHOW_
DOCUMENT/()

Note that in the example above, the Reports Server name is hard-coded to
‘Repstv’, which can be avoided by using a parameter in Forms. Also the URL is
relative, meaning that the Reports Services installation is on the same Oracle9/AS
installation.

Example — Reports SSO and WEB.SHOW_DOCUMENT()

With Oracle97AS Reports Services and Oracle97AS Forms Services there exists the
option to securely store the application connect information of a user in the Oracle
Internet Directory (OID). The connect information is accessed from a named
identifier specified with the Forms or Reports URL.

For example: assume that the database account information is scott/tiger@orcl
and that this information was registered in the OID under the named identifier
‘myApp’. To use this datasource from Forms and Reports running in sso mode, all
you need to do is to specify the name ‘myApp’ in the Forms ‘config” URL
parameter and in the Reports ‘ssoconn’ URL parameter when requesting the
application. The combination of the single sign-on username and the named
identifier 1s unique for each user, thus allowing the Forms and Reports servlets to
find the user’s connect information in the OID during startup. The following call
to WEB.SHOW_DOCUMENTY() is assumed to come from a Forms application
that was started in sso mode. This time, the single sign-on user is authenticated and

the user name is known in the browser session.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 35

/* WHEN-BUTTON-PRESSED */
DECLARE

vc_url varchar2(100);

BEGIN
vc_url:='/reports/rwservlet?server=Repsrv&report=reptest.rdf &desformat=htmlcss’
|| ‘&destype=cache&ssoconn=myApp&p_deptno="|| :dept.deptno ||
‘¶mform=no’;
WEB.SHOW_DOCUMENT (vc_url,’_blank’);

END;

Example 13: Using Reports single sign-on authentication with WEB.SHOW _
DOCUMENT/()

The Reports Servlet uses the value specified in the ssoconn parameter to retrieve
the datasource connect information stored in the OID for the connected user.

If the user has not yet been authenticated (as would happen, for example, when
Forms is not running in single sign-on mode) before the report will execute, a
single sign-on logon dialog is displayed for the user to authenticate..

Printing Reports output on the Web

Reports output created with the Reports Server is sent to a printer using the
destype=ptinter and desname= \\network_access\ptinter_name arguments.
Because the Reports output is created on the middle-tier server, there is no local
printer support. To send a report to a local , make sure that the printer is
configured as a network printer on the middle-tier server which hosts the Reports
Server.

FORMS MIGRATION ASSISTANT (FMA)*

The Forms Migration Assistant (FMA) provided with Oracle9; Forms contains a
utility to migrate integrated calls to Oracle Reports which originally used the
RUN_PRODUCT built-in to use RUN_REPORT_OBJECT instead. The FMA is
an automated tool, and as such it cannot provide the same flexibility that
RUN_REPORT_OBJECT provides in a manual migration. However, if you don’t
know how to use RUN_REPORT_OBJECT in Forms or if your business doesn’t
allow longer maintenance intervals when migrating your Forms application to the

2 Oracle recommends using the FMA that comes with the first patch set of Forms9z.
All problem described in this section are fixed within the patch.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 36

Web, the FMA gives you a working implementation of the
RUN_REPORT_OBJECT? built-in.

Known issue with rp2rro.pll and workaround

There exists a known issue with the RUN_PRODUCT) to
RUN_REPORT_OBJECT() migration utility in the FMA version shipped with the
base release of Oracle9/AS Release2. The problem is in the Forms library
rp2rro.pll, which handles converted RUN_PRODUCTY() calls after the migration.
To fix this problem, open the rp2rro.pll file in Oracle9/ Forms Developer and
double-click the package body.

Search for the string “getjobid="" to find the following code segment :

WEB.SHOW_DOCUMENT (rp2rroVirtualDir||[rp2rroReportsinterface||'/getjobid=

|Irp2rro_jobidFull||"?server="||rp2rroReportServer,’_blank’);

Change this code line to

WEB.SHOW_DOCUMENT (rp2rroVirtualDir||[rp2rroReportsinterface||'/getjobid’

|Irp2rro_jobidPartial|"?server="||rp2rroReportServer,’_blank’);

Without this change, the Reports Server displays an error message showing a

numeric format exception.

If you don’t have a database account accessible with the rw_server_queue table
installed, then to compile rp2rro.pll, in the same package search for
“rp2rro_getQueueTableErrors”.

Edit the rp2rro_getQueueTableErrors function with the elements highlighted in
bold.

2+ Please refer to the documentation of the Forms Migration Assistant about how to use
it and what to expect from the RUN_REPORT_OBJECT migration.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 37

FUNCTION rp2rro_getQueueTableErrors (joblD varchar2) RETURN Varchar2 IS
vErrors varchar2 (4000):="";
== CURSOR getErrorsFromQueueTable IS select status_code ||’ -’
||status_message from rw_server_queue where job_id = to_number(jobID);
BEGIN
==open getErrorsFromQueueTable;
== fetch getErrorsFromQueueTable into VErrors;
== close getErrorsFromQueueTable;
== return vErrors;

null;

EXCEPTION

WHEN OTHERS THEN

return 'rp2rro error: Reports Queue table not available’;

END;

Example 14: Disabling the requitement of the rw_server_queue table install to
recompile rp2rro.pll

You should now be able to compile the rp2rro.pll file and run your converted
Reports. This problem, as mentioned eatlier, is a known problem and will be fixed
in a future Oracle9/ Forms patch sets.

SUMMARY

This paper highlighted the options available for integrating calls to Oracle9:
Reportts in Oracle97AS Forms Services on the Web. The RUN_PRODUCT() built-
in 1s no longer available in Forms to call out to Oracle Reports. Instead, either the
RUN_REPORT_OBJECT() built-in, first introduced in Oracle Forms 5.0, or the
WEB.SHOW_DOCUMENT() must be used for this task.

New in Oracle9iAS Forms and Reports is single sign-on integration. In Forms and
Reports, single sign-on is performed with mod_osso in the Oracle HI'TP Server
and the Oracle9iAS Single Sign-On Server. For Reports integration in Forms to
work, it is recommended that you run Forms and Reports in the same mode, single

sign-on ot non single sign-on.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 38

Appendix: Usability matrix

This function matrix compares the options described in this paper for running

Reports from Forms on the Web.

Functionality RUN_REPORT _ WEB.SHOW _
OBJECT DOCUMENT

Multiuset-enabled v v

Parallel Reports processing v v

Scalable v v

Asynchronous reporting v

Repotts parameter form support w25 v

Using Forms parameter lists v

Secute uset name/ passwotd W w26

Report status notification v

User-defined parameters v v

Running Reports on a host other v v

than the Forms Setrvices

Multiple output formats v v

Recommended v v

Appendix B: Passing Forms parameter lists

Passing a parameter to a report with RUN_REPORT _OBJECT differs from
passing it with RUN_PRODUCT. However, it is still possible to use the parameter
lists created to run with RUN_PRODUCT in combination with

RUN_REPORT_OBJECT.

The following code includes a parameter list in a call to RUN_REPORT
_OBJECT that submits a Report to the Reports Multi-tier Server.

25 Requires additional coding as explained in this paper

26 Only with single sign-on

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services

Page 39

Forms Parameter list example

PROCEDURE RUN_REPORT_OBJECT_LIST(report_id REPORT_OBJECT,

varchar2,

runformat varchar2) 1S

ReportServerJob VARCHAR2(100);
vC_rep_status VARCHAR2(20);
paramlist_id ParamlList;
paramlist_name VARCHAR2(10):="tmplist’;

BEGIN

reportserver

I* The Reports_Object Properties needs to be set for using the Reports Server .*/

SET_REPORT_OBJECT_PROPERTY (report_id, REPORT_COMM_MODE,

SYNCHRONOUS);

SET_REPORT_OBJECT_PROPERTY(report_id, REPORT_SERVER, reportserver);

/* Check for and delete parameterlist. */

paramlist_id:= get_parameter_list(paramlist_name);

IF NOT id_null(paramlist_id) THEN
destroy_parameter_list(paramlist_id);
END IF;

paramlist_id:=create_parameter_list(paramlist_name);

I* The parameterlist determines the destype, the Reports output format, and the user

defined variable read from a Forms file’s :dept.deptno. */

add_parameter(paramlist_id,'DESTYPE', TEXT_PARAMETER,'CACHE);

add_parameter(paramlist_id, PARAMFORM', TEXT_PARAMETER,'NO";

add_parameter(paramlist_id,'p_ DEPTNO', TEXT_PARAMETER,
:DEPT.DEPTNO);

add_parameter(paramlist_id,'desformat’, TEXT_PARAMETER,

ReportServerJob:=RUN_REPORT_OBJECT(report_id,paramlist_id);

END;

runformat);

Example 15: Using Forms parameter lists with RUN_REPORT_OBJECT))

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services

Page 40

Important: If your existing parameter list already contains definitions for system
parameters, this list will overwrite the configuration in SET_REPORT_OBJECT
_PROPERTY(). To avoid confusion or unwanted behavior, we recommend that
you modify the parameter list itself, removing the entries for DESNAME and
DESTYPE, or that you add

delete_parameter(<parameter list>,'<name>');

to your code before using SET_REPORT_OBJECT_PROPERTIES().

Note that having DESTYPE defined both in the parameter list and in
SET_REPORT_OBJECT _PROPERTIES does not prevent the program from
compiling, but will prevent it from running.

Appendix C: Troubleshooting

The following table lists some of the problems that can arise when you work with
Forms on the Web that have integrated calls to Oracle Reports.

Problem Solution

The Reports Server started with Reports Servers are CORBA based and
rwserver server=<server_name> check the network to see whether a
batch=yes starts up but is not accessible | started Reports Server name already
from the Reports servlet Web interface. | exists. If a Reports Server with the same
name exists, the second Reports Server
shuts itself down. On Windows, you
can see an error message if you are not
using batch=yes when starting the
Reports Server process. To be on the
safe side, always specify the host name
within the name of the Reports Server:
RepsrvFnimphiu-lap’ is less ambiguous
than ‘Repsrv’

After an upgrade from Forms6: to In Oracle97AS Reports Services, the
Oracle9: Forms, calls to format of the value used with ‘getjobid’
RUN_REPORT_OBJECT() create a has changed.

Reports output on the server, but the

b due In Reports6s, the format was
output cannot be accessed usin o .
.p _ & getjobid=<report_server_name>_<job
getjobid.

number>
In Oracle9i Reports this has become
Getjobid<job number>

Add the following line to the trigger
including the
RUN_REPORT_OBJECT() call to fix

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services Page 41

the problem:

vjob_id : = substr(report_nessage,
I engt h(reportserver)+2,1length

(report_nessage));

Use “...getjobid”||vjob_id]|"... in
your call to WEB.SHOW_DOCUMENT()

Oracle97AS Forms Services cannot run
integrated Reports. The job fails with an
error message saying that no job status
could be obtained.

The Reports Server is configured
incorrectly for access control. Open the
Oracle9iAS_Home/repotts/conf/
<Report_Server_Name>.conf
configuration file and remove the
<secutity>...</secutity> tag pait along
with its content.

Using RUN_REPORT_OBJECT() in
Forms does not work with Reports in

process server.

Forms requires the Reports Server to
run in an extra process. This is the case
because the call to Oracle Reports is
performed on the server-side and not
via the Reports Servlet If you want to
use the in process server, you must start
the Reports integration using the WEB.
SHOW_DOCUMENT() built-in.

Integrating Oracle9iAS Reports in Oracle9/AS Forms Services

Page 42

ORACLE

Integrating Oracle9iAS Reports Services in Oracle9/AS Forms Services
December 2002

Author: Frank Nimphius

Contributing Authors:

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2002 Oracle Corporation
All rights reserved.

